




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
MachineLearning:
findingpatternsOutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka2FindingpatternsGoal:programsthatdetectpatternsandregularitiesinthedataStrongpatternsgoodpredictionsProblem1:mostpatternsarenotinterestingProblem2:patternsmaybeinexact(or spurious)Problem3:datamaybegarbledormissing3MachinelearningtechniquesAlgorithmsforacquiringstructuraldescriptionsfromexamplesStructuraldescriptionsrepresentpatternsexplicitlyCanbeusedtopredictoutcomeinnewsituationCanbeusedtounderstandandexplainhowpredictionisderived
(maybeevenmoreimportant)Methodsoriginatefromartificialintelligence,statistics,andresearchondatabaseswitten&eibe4Canmachinesreallylearn?Definitionsof“learning”fromdictionary:Togetknowledgeofbystudy,
experience,orbeingtaughtTobecomeawarebyinformationor
fromobservationTocommittomemoryTobeinformedof,ascertain;toreceiveinstructionDifficulttomeasureTrivialforcomputersThingslearnwhentheychangetheirbehaviorinawaythatmakesthemperformbetterinthefuture.Operationaldefinition:Doesaslipperlearn?Doeslearningimplyintention?witten&eibe5ClassificationLearnamethodforpredictingtheinstanceclassfrompre-labeled(classified)instancesManyapproaches:Regression,DecisionTrees,Bayesian,NeuralNetworks,...Givenasetofpointsfromclasseswhatistheclassofnewpoint?6Classification:LinearRegressionLinearRegressionw0+w1x+w2y>=0Regressioncomputeswifromdatatominimizesquarederrorto‘fit’thedataNotflexibleenough7Classification:DecisionTreesXYifX>5thenblueelseifY>3thenblueelseifX>2thengreenelseblue5238Classification:NeuralNetsCanselectmorecomplexregionsCanbemoreaccurateAlsocanoverfitthedata–findpatternsinrandomnoise9OutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka10TheweatherproblemOutlookTemperatureHumidityWindyPlaysunnyhothighfalsenosunnyhothightruenoovercasthothighfalseyesrainymildhighfalseyesrainymildnormalfalseyesrainymildnormaltruenoovercastmildnormaltrueyessunnymildhighfalsenosunnymildnormalfalseyesrainymildnormalfalseyessunnymildnormaltrueyesovercastmildhightrueyesovercasthotnormalfalseyesrainymildhightruenoGivenpastdata,CanyoucomeupwiththerulesforPlay/NotPlay?Whatisthegame?11The
weatherproblemGiventhisdata,whataretherulesforplay/notplay?OutlookTemperatureHumidityWindyPlaySunnyHotHighFalseNoSunnyHotHighTrueNoOvercastHotHighFalseYesRainyMildNormalFalseYes……………12The
weatherproblemConditionsforplayingOutlookTemperatureHumidityWindyPlaySunnyHotHighFalseNoSunnyHotHighTrueNoOvercastHotHighFalseYesRainyMildNormalFalseYes……………Ifoutlook=sunnyandhumidity=highthenplay=noIfoutlook=rainyandwindy=truethenplay=noIfoutlook=overcastthenplay=yesIfhumidity=normalthenplay=yesIfnoneoftheabovethenplay=yeswitten&eibe13WeatherdatawithmixedattributesOutlookTemperatureHumidityWindyPlaysunny8585falsenosunny8090truenoovercast8386falseyesrainy7096falseyesrainy6880falseyesrainy6570truenoovercast6465trueyessunny7295falsenosunny6970falseyesrainy7580falseyessunny7570trueyesovercast7290trueyesovercast8175falseyesrainy7191trueno14WeatherdatawithmixedattributesHowwilltheruleschangewhensomeattributeshavenumericvalues?OutlookTemperatureHumidityWindyPlaySunny8585FalseNoSunny8090TrueNoOvercast8386FalseYesRainy7580FalseYes……………15WeatherdatawithmixedattributesRuleswithmixedattributesOutlookTemperatureHumidityWindyPlaySunny8585FalseNoSunny8090TrueNoOvercast8386FalseYesRainy7580FalseYes……………Ifoutlook=sunnyandhumidity>83thenplay=noIfoutlook=rainyandwindy=truethenplay=noIfoutlook=overcastthenplay=yesIfhumidity<85thenplay=yesIfnoneoftheabovethenplay=yeswitten&eibe16ThecontactlensesdataAgeSpectacleprescriptionAstigmatismTearproductionrateRecommendedlensesYoungMyopeNoReducedNoneYoungMyopeNoNormalSoftYoungMyopeYesReducedNoneYoungMyopeYesNormalHardYoungHypermetropeNoReducedNoneYoungHypermetropeNoNormalSoftYoungHypermetropeYesReducedNoneYoungHypermetropeYesNormalhardPre-presbyopicMyopeNoReducedNonePre-presbyopicMyopeNoNormalSoftPre-presbyopicMyopeYesReducedNonePre-presbyopicMyopeYesNormalHardPre-presbyopicHypermetropeNoReducedNonePre-presbyopicHypermetropeNoNormalSoftPre-presbyopicHypermetropeYesReducedNonePre-presbyopicHypermetropeYesNormalNonePresbyopicMyopeNoReducedNonePresbyopicMyopeNoNormalNonePresbyopicMyopeYesReducedNonePresbyopicMyopeYesNormalHardPresbyopicHypermetropeNoReducedNonePresbyopicHypermetropeNoNormalSoftPresbyopicHypermetropeYesReducedNonePresbyopicHypermetropeYesNormalNonewitten&eibe17AcompleteandcorrectrulesetIftearproductionrate=reducedthenrecommendation=noneIfage=youngandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfage=pre-presbyopicandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfage=presbyopicandspectacleprescription=myope
andastigmatic=nothenrecommendation=noneIfspectacleprescription=hypermetropeandastigmatic=no
andtearproductionrate=normalthenrecommendation=softIfspectacleprescription=myopeandastigmatic=yes
andtearproductionrate=normalthenrecommendation=hardIfageyoungandastigmatic=yes
andtearproductionrate=normalthenrecommendation=hardIfage=pre-presbyopic
andspectacleprescription=hypermetrope
andastigmatic=yesthenrecommendation=noneIfage=presbyopicandspectacleprescription=hypermetrope
andastigmatic=yesthenrecommendation=nonewitten&eibe18Adecisiontreeforthisproblemwitten&eibe19ClassifyingirisflowersSepallengthSepalwidthPetallengthPetalwidthType0.2Irissetosa24.93.01.40.2Irissetosa…517.0Irisversicolor51.5Irisversicolor…102.5Irisvirginica101.9Irisvirginica…Ifpetallength<2.45thenIrissetosaIfsepalwidth<2.10thenIrisversicolor...witten&eibe20Example:209differentcomputerconfigurationsLinearregressionfunctionPredictingCPUperformanceCycletime(ns)Mainmemory(Kb)Cache(Kb)ChannelsPerformanceMYCTMMINMMAXCACHCHMINCHMAXPRP112525660002561612819822980003200032832269…20848051280003200672094801000400000045PRP= -55.9+0.0489MYCT+0.0153MMIN+0.0056MMAX
+0.6410CACH-0.2700CHMIN+1.480CHMAXwitten&eibe21SoybeanclassificationAttributeNumberofvaluesSamplevalueEnvironmentTimeofoccurrence7JulyPrecipitation3Abovenormal…SeedCondition2NormalMoldgrowth2Absent…FruitConditionoffruitpods4NormalFruitspots5?LeavesCondition2AbnormalLeafspotsize3?…StemCondition2AbnormalStemlodging2Yes…RootsCondition3NormalDiagnosis19Diaporthestemcankerwitten&eibe22TheroleofdomainknowledgeIfleafconditionisnormal
andstemconditionisabnormal
andstemcankersisbelowsoilline
andcankerlesioncolorisbrownthen
diagnosisisrhizoctoniarootrotIfleafmalformationisabsent
andstemconditionisabnormal
andstemcankersisbelowsoilline
andcankerlesioncolorisbrownthen
diagnosisisrhizoctoniarootrotButinthisdomain,“leafconditionisnormal”implies
“leafmalformationisabsent”!witten&eibe23OutlineMachinelearningandClassificationExamples*LearningasSearch
BiasWeka24LearningassearchInductivelearning:findaconceptdescriptionthatfitsthedataExample:rulesetsasdescriptionlanguageEnormous,butfinite,searchspaceSimplesolution:enumeratetheconceptspaceeliminatedescriptionsthatdonotfitexamplessurvivingdescriptionscontaintargetconceptwitten&eibe25EnumeratingtheconceptspaceSearchspaceforweatherproblem4x4x3x3x2=288possiblecombinationsWith14rules2.7x1034possiblerulesetsSolution:candidate-eliminationalgorithmOtherpracticalproblems:MorethanonedescriptionmaysurviveNodescriptionmaysurviveLanguageisunabletodescribetargetconceptordatacontainsnoisewitten&eibe26TheversionspaceSpaceofconsistentconceptdescriptionsCompletelydeterminedbytwosetsL:mostspecificdescriptionsthatcoverallpositiveexamplesandnonegativeonesG:mostgeneraldescriptionsthatdonotcoveranynegativeexamplesandallpositiveonesOnlyLandGneedbemaintainedandupdatedBut:stillcomputationallyveryexpensiveAnd:doesnotsolveotherpracticalproblemswitten&eibe27*Versionspaceexample,1Given:redorgreencowsorchicken
Startwith: L={} G={<*,*>}Firstexample:<green,cow>:positive
HowdoesthischangeLandG?witten&eibe28*Versionspaceexample,2Given:redorgreencowsorchicken
Result: L={<green,cow>} G={<*,*>}Secondexample:<red,chicken>:negativewitten&eibe29*Versionspaceexample,3Given:redorgreencowsorchicken
Result: L={<green,cow>} G={<green,*>,<*,cow>}Finalexample:<green,chicken>:positive
witten&eibe30*Versionspaceexample,4Given:redorgreencowsorchicken
Resultantversionspace: L={<green,*>} G={<green,*>}witten&eibe31*Versionspaceexample,5Given:redorgreencowsorchicken
L={} G={<*,*>}<green,cow>:positive L={<green,cow>} G={<*,*>}<red,chicken>:negative L={<green,cow>} G={<green,*>,<*,cow>}<green,chicken>:positive L={<green,*>} G={<green,*>}witten&eibe32*Candidate-eliminationalgorithmInitializeLandGForeachexamplee: Ifeispositive: DeleteallelementsfromGthatdonotcovere
ForeachelementrinLthatdoesnotcovere: Replacerbyallofitsmostspecificgeneralizations
that 1.covereand 2.aremorespecificthansomeelementinG RemoveelementsfromLthat
aremoregeneralthansomeotherelementinL Ifeis
negative: DeleteallelementsfromLthatcovere
ForeachelementrinGthatcoverse:
Replacerbyallofitsmostgeneralspecializations
that 1.donotcovereand
2.aremoregeneralthansomeelementinL
RemoveelementsfromGthat
aremorespecificthansomeotherelementinGwitten&eibe33OutlineMachinelearningandClassificationExamples*LearningasSearchBiasWeka34BiasImportantdecisionsinlearningsystems:ConceptdescriptionlanguageOrderinwhicht
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房間隔缺損的護理查房
- 2024中鐵大橋局集團有限公司校園招聘筆試參考題庫附帶答案詳解
- 七年級英語下冊 Unit 2 Its Show Time《lesson 12 A blog about the silk road》教學設計 (新版)冀教版
- 七年級生物上冊 3.5.2營養物質的作用教學設計 (新版)蘇科版
- 創業培訓總結文案工作流程
- 2024中國郵政集團有限公司貴州省分公司夏季招聘176人筆試筆試參考題庫附帶答案詳解
- 2024中國聯通軟件研究院校園招聘(19個崗位)筆試參考題庫附帶答案詳解
- 班主任培訓交流會心得分享
- 九年級化學下冊 第8單元 金屬和金屬材料 課題3 金屬資源的利用和保護 第2課時 金屬資源的保護教學設計 (新版)新人教版
- 全國青島版信息技術八年級下冊第2單元第5課《謎語大擂臺(二)》教學設計
- 立體構成概述課件完整版
- 滬教牛津版小學三至六年級英語單詞表
- 采購談判的技巧案例
- 質量整改通知單(樣板)
- 二子女無財產無債務離婚協議書
- 公司董事會會議臺賬
- 西門子仿真數據與流程管理平臺介紹
- 短視頻:策劃+拍攝+制作+運營課件(完整版)
- 專業稅務顧問業務報告
- 2021-2022學年福建省廈門市第一中學高二下學期期中生物試題(原卷版)
- 學生宿舍樓建筑與結構設計畢業設計計算書
評論
0/150
提交評論