




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中考數學復習考點專項訓練——平行四邊形一、選擇題1.在中,,則的度數等于(
)A. B. C. D.2.如圖,?ABCD中,對角線AC和BD相交于點O,如果AC=12、BD=10、AB=m,那么m的取值范圍是()A.1<m<11 B.2<m<22 C.10<m<12 D.5<m<63.如圖,在菱形ABCD中,∠A=60°,AD=8.點P是AB邊上的一點,E,F分別是DP,BP的中點,則線段EF的長為(
)
A.8 B.25 C.4 D.4.四邊形ABCD中,對角線AC,BD交于點O,AD//BC,為了判定四邊形是平行四邊形,還需一個條件,其中錯誤的是(
)A.AB//CD B.∠A=∠C C.AB=CD D.AO=CO5.如圖,平行四邊形ABCD中,AD=5,AB=3,AE平分∠BAD交BC邊于點E,則EC等于()A.1 B.2 C.3 D.46.如圖,在平行四邊形ABCD中,E是AB的中點,CE和BD交于點O,設△OCD的面積為m,△OEB的面積為5,則下列結論中正確的是(
)
A.m=5 B.m=35 C.m=45 7.如圖,中,對角線相交于點交于點,連接,若的周長為28,則的周長為(
)
A.28 B.24 C.21 D.148.如圖,?ABCD的對角線相交于點O,且DC≠AD,過點O作OE⊥BD交BC于點E,若△CDE的周長為6cm,則平行四邊形ABCD的周長為()A.6cm B.8cm C.10cm D.12cm9.如圖1,平行四邊形紙片ABCD的面積為120,AD=20.今沿兩對角線將四邊形ABCD剪成甲、乙、丙、丁四個三角形紙片.若將甲、丙合并(AD,CB重合)形成一個對稱圖形戊,如圖2所示,則圖形戊中的四邊形兩對角線長度和為(
)
A.24 B.25 C.26 D.2910.如圖,在平行四邊形ABCD中,E在AC上,,F在AD上,,如果的面積為2,則平行四邊形ABCD的面積為()
A.4 B.8 C.9 D.1011.若?ABCD的頂點O、A、C的坐標分別是(0,0)、(5,0)、(2,3),則頂點B的坐標是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)12.如圖,菱形OCED的頂點O是△ABC的外心,則點O(
)
A.一定是△CBE的外心 B.一定不是△ABD的外心
C.一定是△CBD的外心 D.一定不是△ACD的外心
13.如圖,平行四邊形ABCD的周長為36,對角線AC、BD相交于點O,
點E是CD的中點,BD=12,則△DOE的周長為(
)
A.12 B.15 C.18 D.2114.如圖,在平行四邊形ABCD中(AB≠BC),直線EF經過其對角線的交點O,且分別交AD、BC于點M、N,交BA、DC的延長線于點E、F,下列結論:①AO=BO;②OE=OF;③△EAM≌△CFN;④△EAO≌△CNO,其中正確的是()A.①② B.②③ C.②④ D.③④15.如圖1,?ABCD中,AB=3,BD⊥AB,動點F從點A出發,沿折線ADB以每秒1個單位長度的速度運動到點B.圖2是點F運動時,△FBC的面積y隨時間x變化的圖象,則m的值為(
)
A.6 B.10 C.12 D.2016.如圖,在平行四邊形中,,,的平分線交于點,則是()
A.2 B.3 C.4 D.517.如圖,若?ABCD的周長為36cm,過點D分別作AB,BC邊上的高DE,DF,且DE=4cm,DF=5cm,?ABCD的面積為()cm.A.40 B.32 C.36 D.5018.如圖,在△ABC中,點D,E,F分別在邊BC,AB,CA上,且DE?//?CA,DF?//?BA.下列四種說法:
①四邊形AEDF是平行四邊形;
②如果∠BAC=90°,那么四邊形AEDF是矩形;
③如果AD平分∠BAC,那么四邊形AEDF是菱形;
④如果AD⊥BC且AB=AC,那么四邊形AEDF是菱形.
其中,正確的有(
)個.
A.1 B.2 C.3 D.419.如圖,的對角線、交于點O,平分交于點E,且,,連接.下列結論:①;②;③;④;成立的個數有(
)
A.1個 B.2個 C.3個 D.4個20.如圖,在邊長為a正方形ABCD中,把邊BC繞點B逆時針旋轉60°,得到線段BM,連接AM并延長交CD于N,連接MC,則下列說法正確的是(
)
①MN=CN;②AN=(6?2)a;③S△MNCA.①④ B.②③ C.①②③ D.②③④二、填空題
21.如圖在平行四邊形ABCD中,∠B=110°,延長AD至F,延長CD至E,連結EF,則∠E+∠F的度數是__________.
22.已知:如圖,平行四邊形ABCD中,BE平分∠ABC交AD于E,CF平分∠BCD交AD于F,若AB=3,BC=5,則EF=.23.A、B、C、D在同一平面內,從①AB?//?CD;②AB=CD;③BC?//?AD;④BC=AD這四個條件中任選兩個,能使四邊形ABCD是平行四邊形的選法有________種.24.如圖,在中,于點E,于點F,∠EBF=60°,則∠C=________.
25.如圖,四邊形ABCD是平行四邊形,AB=10,AD=6,AC⊥BC,AC與BD相交于點O,則BO的長為.26.如圖,已知菱形OABC的邊OA在x軸上,∠AOC=60°,點A的坐標為(0,6),則點B的坐標為________.
27.如圖,在四邊形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=11,點P從點A出發,以3個單位/s的速度沿AD→DC向終點C運動,同時點Q從點B出發,以1個單位/s的速度沿BA向終點A運動,在運動期間,當四邊形PQBC為平行四邊形時,運動時間為秒.28.如圖,?ABCD的周長為20,對角線AC與BD相交于點O,△AOB的周長比△BOC的周長多2,則AB=________.
29.如圖,把一張平行四邊形紙片ABCD沿BD對折,使點C落在E處,BE與AD相交于點O,若∠DBC=15°,則∠BOD等于________.
30.如圖,在△ABC中,E,D,F分別是AB,BC,CA的中點,AC=4,BC=5,AB=6,則四邊形AEDF的周長是.31.如圖,在平行四邊形ABCD中,BD為對角線,點E、O、F分別是AB、BD、BC的中點,且OE=3,OF=2,則平行四邊形ABCD的周長為32.如圖,在四邊形ABCD中,AD與BC不平行,AB=CD.AC,BD是四邊形ABCD的對角線,E,F,G,H分別是BD,BC,AC,AD的中點.下列結論:①EG⊥FH;②四邊形EFGH是矩形;③EG=12BC?AD;④HF平分∠EHG.其中正確的是________.
三、解答題
33.如圖,在?ABCD中,∠ADC的平分線交AB于點E,∠ABC的平分線交CD于點F,求證:四邊形EBFD是平行四邊形.34.如圖,△ABC的中線BE,CF相交于點G,P,Q分別是BG,CG的中點.(1)求證:四邊形EFPQ是平行四邊形;(2)請直接寫出BG與GE的數量關系:.(不要求證明)35.如圖,在?ABCD中,AE=CF,M、N分別是BE、DF的中點,試說明四邊形MFNE是平行四邊形.36.如圖,點E是正方形ABCD對角線AC上一點,EF⊥AB,EG⊥BC,垂足分別為F,G,若正方形ABCD的周長是40cm.
(1)求證:四邊形BFEG是矩形;(2)求四邊形EFBG的周長;(3)當AF的長為________時,四邊形BFEG是正方形?37.如圖,E、F是?ABCD的對角線AC上的兩點,且BE⊥AC,DF⊥AC,連接BE、ED、DF、FB.
(1)求證:四邊形BEDF為平行四邊形;
(2)若BE=4,EF=2,求BD的長.38.如圖,在△ABC中,點D是BC邊的中點,點F,E分別是AD及其延長線上的點,CFBE,連接BF,CE.求證:四邊形BECF是平行四邊形.
39.在中,是對角線,于點E,于點F.
(1)求證:;
(2)試判斷四邊形是不是平行四邊形,并說明理由.40.如圖,在平行四邊形中,對角線與相交于點O,延長到點E,使,連接.
(1)求證:四邊形是平行四邊形;
(2)已知,,若,求的周長.41.如圖,已知在平行四邊形ABCD中,E、F分別是邊AD、BC上的點,且DE=BF,過E、F兩點作直線,分別與CD、AB的延長線相交于點M、N,連接CE、AF.求證:(1)四邊形AFCE是平行四邊形;(2)△MEC≌△NFA.42.如圖,在?ABCD中,E、F是對角線BD上的兩點,BE=DF,點G、H分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 終止用工協議書
- 談判合作協議書
- 部門溝通協議書
- 南京市公司員工協議書
- 退出直播協議書
- 退還出資協議書
- 酒吧融資協議書
- 草原征占協議書
- 標準化病人保密協議書
- 環衛所廚余合同協議書
- 2025購銷茶葉合同范本
- 山東濟南歷年中考作文題與審題指導(2005-2021)
- 職業技術學院2024級工業互聯網技術專業人才培養方案
- 锝99mTc替曲膦注射液-藥品臨床應用解讀
- 武漢各區2023-2024學年九下化學四調壓軸題分類匯編-第8題選擇題
- 腦血管造影術的術前及術后護理
- 外墻涂料施工勞務合同范本(8篇)
- 成人重癥患者顱內壓增高防控護理專家共識2024
- 網絡災難與信息安全應急
- 音樂人類學視角-洞察分析
- 中職語文職業模塊期末綜合測試題(三)
評論
0/150
提交評論