




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如果,那么的值為()A.1 B.2 C. D.2.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④3.二次函數y=ax2+c的圖象如圖所示,正比例函數y=ax與反比例函數y=在同一坐標系中的圖象可能是()A. B. C. D.4.一元二次方程x2+x﹣2=0的根的情況是()A.有兩個不相等的實數根 B.有兩個相等的實數根C.只有一個實數根 D.沒有實數根5.在下列函數中,其圖象與x軸沒有交點的是()A.y=2x B.y=﹣3x+1 C.y=x2 D.y=6.如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=4,AB=18,則△ABD的面積是()A.18 B.36 C.54 D.727.實數a在數軸上的位置如圖所示,則下列說法不正確的是()A.a的相反數大于2B.a的相反數是2C.|a|>2D.2a<08.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.9.某班選舉班干部,全班有1名同學都有選舉權和被選舉權,他們的編號分別為1,2,…,1.老師規定:同意某同學當選的記“1”,不同意(含棄權)的記“0”.如果令其中i=1,2,…,1;j=1,2,…,1.則a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是()A.同意第1號或者第2號同學當選的人數B.同時同意第1號和第2號同學當選的人數C.不同意第1號或者第2號同學當選的人數D.不同意第1號和第2號同學當選的人數10.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°二、填空題(共7小題,每小題3分,滿分21分)11.若圓錐的底面半徑長為10,側面展開圖是一個半圓,則該圓錐的母線長為_____.12.尺規作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.13.計算(-2)×3+(-3)=_______________.14.唐老師為了了解學生的期末數學成績,在班級隨機抽查了10名學生的成績,其統計數據如下表:分數(單位:分)10090807060人數14212則這10名學生的數學成績的中位數是_____分.15.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是_____.16.為了節約用水,某市改進居民用水設施,在2017年幫助居民累計節約用水305000噸,將數字305000用科學記數法表示為________.17.在一個不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,從中任意摸出一個球,則摸出白球的概率是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一點P,使PA+PB=BC;(尺規作圖,不寫作法,保留作圖痕跡)求BP的長.19.(5分)如圖,四邊形ABCD是邊長為2的正方形,以點A,B,C為圓心作圓,分別交BA,CB,DC的延長線于點E,F,G.(1)求點D沿三條圓弧運動到點G所經過的路線長;(2)判斷線段GB與DF的長度關系,并說明理由.20.(8分)如圖,以△ABC的邊AB為直徑的⊙O分別交BC、AC于F、G,且G是的中點,過點G作DE⊥BC,垂足為E,交BA的延長線于點D(1)求證:DE是的⊙O切線;(2)若AB=6,BG=4,求BE的長;(3)若AB=6,CE=1.2,請直接寫出AD的長.21.(10分)觀察與思考:閱讀下列材料,并解決后面的問題在銳角△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,過A作AD⊥BC于D(如圖(1)),則sinB=,sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即,同理有:,,所以.即:在一個三角形中,各邊和它所對角的正弦的比相等在銳角三角形中,若已知三個元素(至少有一條邊),運用上述結論和有關定理就可以求出其余三個未知元素.根據上述材料,完成下列各題.(1)如圖(2),△ABC中,∠B=45°,∠C=75°,BC=60,則∠A=;AC=;(2)自從去年日本政府自主自導“釣魚島國有化”鬧劇以來,我國政府靈活應對,現如今已對釣魚島執行常態化巡邏.某次巡邏中,如圖(3),我漁政204船在C處測得A在我漁政船的北偏西30°的方向上,隨后以40海里/時的速度按北偏東30°的方向航行,半小時后到達B處,此時又測得釣魚島A在的北偏西75°的方向上,求此時漁政204船距釣魚島A的距離AB.(結果精確到0.01,≈2.449)22.(10分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.23.(12分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.24.(14分)由于霧霾天氣趨于嚴重,我市某電器商城根據民眾健康需求,代理銷售某種家用空氣凈化器,其進價是200元/臺.經過市場銷售后發現:在一個月內,當售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺.若供貨商規定這種空氣凈化器售價不能低于300元/臺,代理銷售商每月要完成不低于450臺的銷售任務.完成下列表格,并直接寫出月銷售量y(臺)與售價x(元/臺)之間的函數關系式及售價x的取值范圍;售價(元/臺)月銷售量(臺)400200250x(2)當售價x(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤w(元)最大?最大利潤是多少?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
先對原分式進行化簡,再尋找化簡結果與已知之間的關系即可得出答案.【詳解】故選:D.【點睛】本題主要考查分式的化簡求值,掌握分式的基本性質是解題的關鍵.2、D【解析】
①根據作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質來求∠ADC的度數;③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質可以證明點D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計算公式來求兩個三角形面積之比.【詳解】①根據作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點睛】本題主要考查尺規作角平分線、角平分線的性質定理、三角形的外角以及等腰三角形的性質,熟練掌握有關知識點是解答的關鍵.3、C【解析】
根據二次函數圖像位置確定a0,c0,即可確定正比例函數和反比例函數圖像位置.【詳解】解:由二次函數的圖像可知a0,c0,∴正比例函數過二四象限,反比例函數過一三象限.故選C.【點睛】本題考查了函數圖像的性質,屬于簡單題,熟悉系數與函數圖像的關系是解題關鍵.4、A【解析】∵?=12-4×1×(-2)=9>0,∴方程有兩個不相等的實數根.故選A.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數根;當?=0時,一元二次方程有兩個相等的實數根;當?<0時,一元二次方程沒有實數根.5、D【解析】
依據一次函數的圖象,二次函數的圖象以及反比例函數的圖象進行判斷即可.【詳解】A.正比例函數y=2x與x軸交于(0,0),不合題意;B.一次函數y=-3x+1與x軸交于(,0),不合題意;C.二次函數y=x2與x軸交于(0,0),不合題意;D.反比例函數y=與x軸沒有交點,符合題意;故選D.6、B【解析】
根據題意可知AP為∠CAB的平分線,由角平分線的性質得出CD=DH,再由三角形的面積公式可得出結論.【詳解】由題意可知AP為∠CAB的平分線,過點D作DH⊥AB于點H,∵∠C=90°,CD=1,∴CD=DH=1.∵AB=18,∴S△ABD=AB?DH=×18×1=36故選B.【點睛】本題考查的是作圖-基本作圖,熟知角平分線的作法是解答此題的關鍵.7、B【解析】試題分析:由數軸可知,a<-2,A、a的相反數>2,故本選項正確,不符合題意;B、a的相反數≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數與數軸.8、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.9、B【解析】
先寫出同意第1號同學當選的同學,再寫出同意第2號同學當選的同學,那么同時同意1,2號同學當選的人數是他們對應相乘再相加.【詳解】第1,2,3,……,1名同學是否同意第1號同學當選依次由a1,1,a2,1,a3,1,…,a1,1來確定,是否同意第2號同學當選依次由a1,2,a2,2,a3,2,…,a1,2來確定,∴a1,1a1,2+a2,1a2,2+a3,1a3,2+…+a1,1a1,2表示的實際意義是同時同意第1號和第2號同學當選的人數,故選B.【點睛】本題考查了推理應用題,題目比較新穎,是基礎題.10、C【解析】
根據對頂角性質、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關鍵是掌握對頂角性質、鄰補角定義及垂線的定義.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】
側面展開后得到一個半圓,半圓的弧長就是底面圓的周長.依此列出方程即可.【詳解】設母線長為x,根據題意得2πx÷2=2π×5,解得x=1.故答案為2.【點睛】本題考查了圓錐的計算,解題的關鍵是明白側面展開后得到一個半圓就是底面圓的周長,難度不大.12、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解析】
利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【點睛】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.13、-9【解析】
根據有理數的計算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點睛】此題主要考查有理數的混合運算,解題的關鍵是熟知有理數的運算法則.14、1【解析】
根據中位數的概念求解即可.【詳解】這組數據按照從小到大的順序排列為:60,60,70,80,80,90,90,90,90,100,則中位數為:=1.故答案為:1.【點睛】本題考查了中位數的概念:將一組數據按照從小到大(或從大到?。┑捻樞蚺帕校绻麛祿膫€數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.15、【解析】
列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為=,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.16、【解析】試題解析:305000用科學記數法表示為:故答案為17、【解析】
根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目;②全部情況的總數.二者的比值就是其發生的概率的大?。驹斀狻拷猓骸咴谝粋€不透明的袋子中裝有除顏色外其他均相同的3個紅球和2個白球,∴從中任意摸出一個球,則摸出白球的概率是.故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2.【解析】
(1)作AC的垂直平分線與BC相交于P;(2)根據勾股定理求解.【詳解】(1)如圖所示,點P即為所求.(2)設BP=x,則CP=1﹣x,由(1)中作圖知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【點睛】考核知識點:勾股定理和線段垂直平分線.19、(1)6π;(2)GB=DF,理由詳見解析.【解析】
(1)根據弧長公式l=nπr180【詳解】解:(1)∵AD=2,∠DAE=90°,
∴弧DE的長l1=90×π×2180=π,
同理弧EF的長l2=90×π×4180=2π,弧FG的長l3=90×π×6180=3π,
所以,點D運動到點G所經過的路線長l=l1+l2+l【點睛】本題考查弧長公式以及全等三角形的判定和性質,題目比較簡單,解題關鍵掌握是弧長公式.20、(1)證明見解析;(1);(3)1.【解析】
(1)要證明DE是的⊙O切線,證明OG⊥DE即可;(1)先證明△GBA∽△EBG,即可得出=,根據已知條件即可求出BE;(3)先證明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根據OG∥BE得出=,即可計算出AD.【詳解】證明:(1)如圖,連接OG,GB,∵G是弧AF的中點,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G為半徑外端,∴DE為⊙O切線;(1)∵AB為⊙O直徑,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴,∴;(3)AD=1,根據SAS可知△AGB≌△CGB,則BC=AB=6,∴BE=4.8,∵OG∥BE,∴,即,解得:AD=1.【點睛】本題考查了相似三角形與全等三角形的判定與性質與切線的性質,解題的關鍵是熟練的掌握相似三角形與全等三角形的判定與性質與切線的性質.21、(1)60,20;(2)漁政船距海島A的距離AB約為24.49海里.【解析】
(1)利用題目總結的正弦定理,將有關數據代入求解即可;(2)在△ABC中,分別求得BC的長和三個內角的度數,利用題目中總結的正弦定理求AC的長即可.【詳解】(1)由正玄定理得:∠A=60°,AC=20;故答案為60°,20;(2)如圖:依題意,得BC=40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,,即,解得AB=10≈24.49(海里).答:漁政船距海島A的距離AB約為24.49海里.【點睛】本題考查了方向角的知識,更重要的是考查了同學們的閱讀理解能力,通過材料總結出學生們沒有接觸的知識,并根據此知識點解決相關的問題,是近幾年中考的高頻考點.22、(1)見解析(2)6【解析】
(1)利用對應兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:23、(1);(2)2<m<;(1)m=6或m=﹣1.【解析】
(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2019-2025年環境影響評價工程師之環評技術導則與標準能力提升試卷A卷附答案
- 2025國際設備租賃合同(4)
- 中消防設計合同標準文本
- 2025煤礦勞動合同
- 2025小麥采購合同范本
- 供暖公司供暖合同樣本
- ktvv承包合同樣本
- 冷庫青椒采購合同樣本
- 個人合伙工作合同標準文本
- 冷鏈配送合同樣本
- 檢驗科2025年度臨床指導計劃
- 口腔科設備器具項目深度研究分析報告
- 2025四川瀘天化弘旭工程建設有限公司社會招聘3人筆試參考題庫附帶答案詳解
- 2025中國煤炭地質總局招聘20人筆試參考題庫附帶答案詳解
- 電網工程設備材料信息參考價(2024年第四季度)
- 走進創業學習通超星期末考試答案章節答案2024年
- 2023年(第九屆)全國大學生統計建模大賽 論文模板及說明
- GB/T 37864-2019生物樣本庫質量和能力通用要求
- 畢業論文板式輸送機的設計
- 三相異步電動機軟啟動器的研究
- 代建管理月報
評論
0/150
提交評論