2023學年錦州市中考二模數學試題含解析及點睛_第1頁
2023學年錦州市中考二模數學試題含解析及點睛_第2頁
2023學年錦州市中考二模數學試題含解析及點睛_第3頁
2023學年錦州市中考二模數學試題含解析及點睛_第4頁
2023學年錦州市中考二模數學試題含解析及點睛_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在平面直角坐標系中,函數的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限2.已知一個多邊形的內角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.一次函數y=ax+b與反比例函數,其中ab<0,a、b為常數,它們在同一坐標系中的圖象可以是()A. B. C. D.4.3的相反數是()A.﹣3 B.3 C. D.﹣5.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.6.tan60°的值是()A. B. C. D.7.下列圖形不是正方體展開圖的是()A. B.C. D.8.若代數式有意義,則實數x的取值范圍是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠19.如圖,在△ABC中,∠C=90°,點D在AC上,DE∥AB,若∠CDE=165°,則∠B的度數為()A.15° B.55° C.65° D.75°10.已知圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,要使這兩圓沒有公共點,那么d的值可以取()A.11; B.6; C.3; D.1.11.規定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現有下列結論:①方程x2+2x﹣8=0是倍根方程;②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);④若點(m,n)在反比例函數y=的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.上述結論中正確的有(

)A.①② B.③④ C.②③ D.②④12.某射擊運動員練習射擊,5次成績分別是:8、9、7、8、x(單位:環).下列說法中正確的是()A.若這5次成績的中位數為8,則x=8B.若這5次成績的眾數是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.意大利著名數學家斐波那契在研究兔子繁殖問題時,發現有這樣一組數:1,1,2,3,5,8,13,…,請根據這組數的規律寫出第10個數是______.14.如圖,利用圖形面積的不同表示方法,能夠得到的代數恒等式是____________________(寫出一個即可).15.有一個正六面體,六個面上分別寫有1~6這6個整數,投擲這個正六面體一次,向上一面的數字是2的倍數或3的倍數的概率是____.16.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于_____.17.如圖,若正五邊形和正六邊形有一邊重合,則∠BAC=_____.18.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(﹣3,4),頂點C在x軸的負半軸上,函數y=(x<0)的圖象經過頂點B,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已如:⊙O與⊙O上的一點A(1)求作:⊙O的內接正六邊形ABCDEF;(要求:尺規作圖,不寫作法但保留作圖痕跡)(2)連接CE,BF,判斷四邊形BCEF是否為矩形,并說明理由.20.(6分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.21.(6分)從化市某中學初三(1)班數學興趣小組為了解全校800名初三學生的“初中畢業選擇升學和就業”情況,特對本班50名同學們進行調查,根據全班同學提出的3個主要觀點:A高中,B中技,C就業,進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數最多,共有人,在扇形統計圖中,該觀點所在扇形區域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數.(3)已知該班只有2位女同學選擇“就業”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).22.(8分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.23.(8分)如圖,已知點E,F分別是□ABCD的邊BC,AD上的中點,且∠BAC=90°.(1)求證:四邊形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面積.24.(10分)如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF,求證:AB∥DE.25.(10分)如圖,在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B兩港口沿AP,BP的路線去小島捕魚作業.已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.求AP,BP的長(參考數據:≈1.4,≈1.7,≈2.2);甲、乙兩船分別從A,B兩港口同時出發去小島P捕魚作業,甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結果求甲、乙兩船的速度各是多少海里/時?26.(12分)2018年春節,西安市政府實施“點亮工程”,開展“西安年·最中國”活動,元宵節晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。在美食一條街上,小明買了一碗元宵,共5個,其中黑芝麻餡兩個,五仁餡兩個,桂花餡一個,當元宵端上來的時候,看著五個大小、色澤一模一樣的元宵,小明的爸爸問了小明兩個問題:(1)小明吃到第一個元宵是五仁餡的概率是多少?請你幫小明直接寫出答案。(2)小明吃的前兩個元宵是同一種餡的元宵概率是多少?請你利用你列表或樹狀圖幫小明求出概率。27.(12分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.求AB的長(精確到0.1米,參考數據:);已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】【分析】一次函數y=kx+b的圖象經過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據此作答即可.【詳解】∵一次函數y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數y=kx+b的圖象經過第幾象限,取決于x的系數和常數項.2、D【解析】

根據多邊形的內角和=(n﹣2)?180°,列方程可求解.【詳解】設所求多邊形邊數為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點睛】本題考查根據多邊形的內角和計算公式求多邊形的邊數,解答時要會根據公式進行正確運算、變形和數據處理.3、C【解析】

根據一次函數的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項不正確;B.由一次函數圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數y=的圖象過二、四象限,所以此選項不正確;C.由一次函數圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數y=的圖象過一、三象限,所以此選項正確;D.由一次函數圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數的圖象,一次函數的圖象,解題關鍵在于確定a、b的大小4、A【解析】試題分析:根據相反數的概念知:1的相反數是﹣1.故選A.【考點】相反數.5、D【解析】

根據軸對稱圖形的概念求解.【詳解】解:根據軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.

故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形6、A【解析】

根據特殊角三角函數值,可得答案.【詳解】tan60°=故選:A.【點睛】本題考查了特殊角三角函數值,熟記特殊角三角函數值是解題關鍵.7、B【解析】

由平面圖形的折疊及正方體的展開圖解題.【詳解】A、C、D經過折疊均能圍成正方體,B折疊后上邊沒有面,不能折成正方體.故選B.【點睛】此題主要考查平面圖形的折疊及正方體的展開圖,熟練掌握,即可解題.8、D【解析】試題分析:∵代數式有意義,∴,解得x≥0且x≠1.故選D.考點:二次根式,分式有意義的條件.9、D【解析】

根據鄰補角定義可得∠ADE=15°,由平行線的性質可得∠A=∠ADE=15°,再根據三角形內角和定理即可求得∠B=75°.【詳解】解:∵∠CDE=165°,∴∠ADE=15°,∵DE∥AB,∴∠A=∠ADE=15°,∴∠B=180°﹣∠C﹣∠A=180°﹣90°﹣15°=75°,故選D.【點睛】本題考查了平行線的性質、三角形內角和定理等,熟練掌握平行線的性質以及三角形內角和定理是解題的關鍵.10、D【解析】∵圓A的半徑長為4,圓B的半徑長為7,它們的圓心距為d,∴當d>4+7或d<7-4時,這兩個圓沒有公共點,即d>11或d<3,∴上述四個數中,只有D選項中的1符合要求.故選D.點睛:兩圓沒有公共點,存在兩種情況:(1)兩圓外離,此時圓心距>兩圓半徑的和;(1)兩圓內含,此時圓心距<大圓半徑-小圓半徑.11、C【解析】分析:①通過解方程得到該方程的根,結合“倍根方程”的定義進行判斷;②設=2,得到?=2=2,得到當=1時,=2,當=-1時,=-2,于是得到結論;③根據“倍根方程”的定義即可得到結論;④若點(m,n)在反比例函數y=的圖象上,得到mn=4,然后解方程m+5x+n=0即可得到正確的結論;詳解:①由-2x-8=0,得:(x-4)(x+2)=0,解得=4,=-2,∵≠2,或≠2,∴方程-2x-8=0不是倍根方程;故①錯誤;②關于x的方程+ax+2=0是倍根方程,∴設=2,∴?=2=2,∴=±1,當=1時,=2,當=-1時,=-2,∴+=-a=±3,∴a=±3,故②正確;③關于x的方程a-6ax+c=0(a≠0)是倍根方程,∴=2,∵拋物線y=a-6ax+c的對稱軸是直線x=3,∴拋物線y=a-6ax+c與x軸的交點的坐標是(2,0)和(4,0),故③正確;④∵點(m,n)在反比例函數y=的圖象上,∴mn=4,解m+5x+n=0得=,=,∴=4,∴關于x的方程m+5x+n=0不是倍根方程;故選C.點睛:本題考查了反比例函數圖象上點的坐標特征,根與系數的關系,正確的理解倍根方程的定義是解題的關鍵.12、D【解析】

根據中位數的定義判斷A;根據眾數的定義判斷B;根據方差的定義判斷C;根據平均數的定義判斷D.【詳解】A、若這5次成績的中位數為8,則x為任意實數,故本選項錯誤;B、若這5次成績的眾數是8,則x為不是7與9的任意實數,故本選項錯誤;C、如果x=8,則平均數為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數、眾數、平均數和方差:一般地設n個數據,x1,x2,…xn的平均數為,則方差,它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以發現:從第三個數起,每一個數都等于它前面兩個數的和.則第8個數為13+8=21;第9個數為21+13=34;第10個數為34+21=1.故答案為1.點睛:此題考查了數字的有規律變化,解答此類題目的關鍵是要求學生通對題目中給出的圖表、數據等認真進行分析、歸納并發現其中的規律,并應用規律解決問題.此類題目難度一般偏大.14、(a+b)2=a2+2ab+b2【解析】

完全平方公式的幾何背景,即乘法公式的幾何驗證.此類題型可從整體和部分兩個方面分析問題.本題從整體來看,整個圖形為一個正方形,找到邊長,表示出面積,從部分來看,該圖形的面積可用兩個小正方形的面積加上2個矩形的面積表示,從不同角度思考,但是同一圖形,所以它們面積相等,列出等式.【詳解】解:,【點睛】此題考查了完全平方公式的幾何意義,從不同角度思考,用不同的方法表示相應的面積是解題的關鍵.15、23【解析】∵投擲這個正六面體一次,向上的一面有6種情況,向上一面的數字是2的倍數或3的倍數的有2、3、4、6共4種情況,∴其概率是=.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.16、40°【解析】

由∠A=30°,∠APD=70°,利用三角形外角的性質,即可求得∠C的度數,又由在同圓或等圓中,同弧或等弧所對的圓周角相等,即可求得∠B的度數.【詳解】解:∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°,∵∠B與∠C是對的圓周角,∴∠B=∠C=40°.故答案為40°.【點睛】此題考查了圓周角定理與三角形外角的性質.此題難度不大,解題的關鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角相等定理的應用.17、132°【解析】解:∵正五邊形的內角=180°-360°÷5=108°,正六邊形的內角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案為132°.18、﹣1【解析】

根據點C的坐標以及菱形的性質求出點B的坐標,然后利用待定系數法求出k的值即可.【詳解】解:∵A(﹣3,4),∴OC==5,∴CB=OC=5,則點B的橫坐標為﹣3﹣5=﹣8,故B的坐標為:(﹣8,4),將點B的坐標代入y=得,4=,解得:k=﹣1.故答案為:﹣1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2)證明見解析.【解析】

(1)如圖,在⊙O上依次截取六段弦,使它們都等于OA,從而得到正六邊形ABCDEF;(2)連接BE,如圖,利用正六邊形的性質得AB=BC=CD=DE=EF=FA,,則判斷BE為直徑,所以∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,然后判斷四邊形BCEF為矩形.【詳解】解:(1)如圖,正六邊形ABCDEF為所作;(2)四邊形BCEF為矩形.理由如下:連接BE,如圖,∵六邊形ABCDEF為正六邊形,∴AB=BC=CD=DE=EF=FA,∴,∴,∴,∴BE為直徑,∴∠BFE=∠BCE=90°,同理可得∠FBC=∠CEF=90°,∴四邊形BCEF為矩形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了矩形的判定與正六邊形的性質.20、見解析,【解析】

要證∠DAE=∠ECD.需先證△ADF≌△CEF,由折疊得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根據等量代換和對頂角相等可以證出,得出結論.【詳解】證明:由折疊得:BC=EC,∠B=∠AEC,∵矩形ABCD,∴BC=AD,∠B=∠ADC=90°,∴EC=DA,∠AEC=∠ADC=90°,又∵∠AFD=∠CFE,∴△ADF≌△CEF(AAS)∴∠DAE=∠ECD.【點睛】本題考查折疊的性質、矩形的性質、全等三角形的性質和判定等知識,借助于三角形全等證明線段相等和角相等是常用的方法.21、(4)A高中觀點.4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數,用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區域的圓心角的度數;(4)用全校初三年級學生數乘以選擇“B中技”觀點的百分比即可估計該校初三學生選擇“中技”觀點的人數;(4)先計算出該班選擇“就業”觀點的人數為4人,則可判斷有4位女同學和4位男生選擇“就業”觀點,再列表展示44種等可能的結果數,找出出現4女的結果數,然后根據概率公式求解.試題解析:(4)該班學生選擇A高中觀點的人數最多,共有60%×50=4(人),在扇形統計圖中,該觀點所在扇形區域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學生選擇“中技”觀點的人數約是456人;(4)該班選擇“就業”觀點的人數=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學和4位男生選擇“就業”觀點,列表如下:共有44種等可能的結果數,其中出現4女的情況共有4種.所以恰好選到4位女同學的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統計圖.22、(1)證明見解析;(2)證明見解析;(3).【解析】

(1)欲證明DB=DE.,只要證明∠DBE=∠DEB;

(2)欲證明CF是⊙O的切線.,只要證明BC⊥CF即可;(3)根據S陰影部分S扇形S△OBD計算即可.【詳解】解:(1)∵E是△ABC的內心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE(2)連接CD∵DA平分∠BAC,∴∠DAB=∠DAC,∴BD=CD,又∵BD=DF,∴CD=DB=DF,∴∴BC⊥CF,∴CF是⊙O的切線(3)連接OD∵O、D是BC、BF的中點,CF4,∴OD2.∵CF是⊙O的切線,∴∴△BOD為等腰直角三角形∴S陰影部分S扇形S△OBD.【點睛】本題考查數學圓的綜合題,考查了圓的切線的證明,扇形的面積公式等,注意切線的證明方法,是高頻考點.23、(1)見解析(2)25【解析】試題分析:(1)利用平行四邊形的性質和菱形的性質即可判定四邊形AECF是菱形;(2)連接EF交于點O,運用解直角三角形的知識點,可以求得AC與EF的長,再利用菱形的面積公式即可求得菱形AECF的面積.試題解析:(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,點E是BC邊的中點,∴AE=CE=12同理,AF=CF=12∴AF=CE.∴四邊形AECF是平行四邊形.∴平行四邊形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=53連接EF交于點O,∴AC⊥EF于點O,點O是AC中點.∴OE=12∴EF=53∴菱形AECF的面積是12AC·EF=25考點:1.菱形的性質和面積;2.平行四邊形的性質;3.解直角三角形.24、詳見解析.【解析】試題分析:利用SSS證明△ABC≌△DEF,根據全等三角形的性質可得∠B=∠DEF,再由平行線的判定即可得AB∥DE.試題解析:證明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),則∠B=∠DEF,∴AB∥DE.考點:全等三角形的判定與性質.25、(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時,乙船的速度是20海里/時【解析】

(1)過點P作PE⊥AB于點E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;(2)設乙船的速度是x海里/時,則甲船的速度是1.2x

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論