




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023中考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如果m的倒數是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20182.已知x+=3,則x2+=()A.7 B.9 C.11 D.83.如圖,△ABC為等腰直角三角形,∠C=90°,點P為△ABC外一點,CP=,BP=3,AP的最大值是()A.+3 B.4 C.5 D.34.已知x=2﹣3,則代數式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣35.下列事件中必然發生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數,結果仍是不等式C.200件產品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數6.設a,b是常數,不等式的解集為,則關于x的不等式的解集是()A. B. C. D.7.3的倒數是()A. B. C. D.8.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.9.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.610.如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為點E,DE=1,則BC=()A. B.2 C.3 D.+2二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:=______.12.如圖,在?ABCD中,AC是一條對角線,EF∥BC,且EF與AB相交于點E,與AC相交于點F,3AE=2EB,連接DF.若S△AEF=1,則S△ADF的值為_____.13.甲乙兩人8次射擊的成績如圖所示(單位:環)根據圖中的信息判斷,這8次射擊中成績比較穩定的是______(填“甲”或“乙”)14.分式方程-1=的解是x=________.15.如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內切圓半徑為__________.16.若x=﹣1是關于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為______.三、解答題(共8題,共72分)17.(8分)在平面直角坐標系中,一次函數的圖象與反比例函數(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數和反比例函數解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據圖象,直接寫出不等式的解集.18.(8分)(1)解不等式組:;(2)解方程:.19.(8分)已知:a是﹣2的相反數,b是﹣2的倒數,則(1)a=_____,b=_____;(2)求代數式a2b+ab的值.20.(8分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數的解析式;(1)求三角形CDE的面積.21.(8分)如圖,是等腰三角形,,.(1)尺規作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.22.(10分)如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=1.點D為y軸上一點,其坐標為(0,2),點P從點A出發以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.(1)當點P經過點C時,求直線DP的函數解析式;(2)如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.(3)點P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.23.(12分)列方程解應用題八年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發,結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.24.如圖,在中,AB=AC,,點D是BC的中點,DE⊥AB于點E,DF⊥AC于點F.(1)∠EDB=_____(用含的式子表示)(2)作射線DM與邊AB交于點M,射線DM繞點D順時針旋轉,與AC邊交于點N.①根據條件補全圖形;②寫出DM與DN的數量關系并證明;③用等式表示線段BM、CN與BC之間的數量關系,(用含的銳角三角函數表示)并寫出解題思路.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
因為兩個數相乘之積為1,則這兩個數互為倒數,如果m的倒數是﹣1,則m=-1,然后再代入m2018計算即可.【詳解】因為m的倒數是﹣1,所以m=-1,所以m2018=(-1)2018=1,故選A.【點睛】本題主要考查倒數的概念和乘方運算,解決本題的關鍵是要熟練掌握倒數的概念和乘方運算法則.2、A【解析】
根據完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關鍵是熟練運用完全平方公式.3、C【解析】
過點C作,且CQ=CP,連接AQ,PQ,證明≌根據全等三角形的性質,得到根據等腰直角三角形的性質求出PQ的長度,進而根據,即可解決問題.【詳解】過點C作,且CQ=CP,連接AQ,PQ,在和中≌AP的最大值是5.故選:C.【點睛】考查全等三角形的判定與性質,三角形的三邊關系,作出輔助線是解題的關鍵.4、C【解析】
把x的值代入代數式,運用完全平方公式和平方差公式計算即可【詳解】解:當x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【點睛】此題考查二次根式的化簡求值,關鍵是代入后利用完全平方公式和平方差公式進行計算.5、C【解析】
直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數,結果仍是不等式,是隨機事件,故此選項錯誤;C、200件產品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數,是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關定義是解題關鍵.6、C【解析】
根據不等式的解集為x<即可判斷a,b的符號,則根據a,b的符號,即可解不等式bx-a<0【詳解】解不等式,移項得:∵解集為x<∴,且a<0∴b=-5a>0,解不等式,移項得:bx>a兩邊同時除以b得:x>,即x>-故選C【點睛】此題考查解一元一次不等式,掌握運算法則是解題關鍵7、C【解析】根據倒數的定義可知.解:3的倒數是.主要考查倒數的定義,要求熟練掌握.需要注意的是:倒數的性質:負數的倒數還是負數,正數的倒數是正數,0沒有倒數.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.8、A【解析】
過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據△ABC∽△GEF,即可得到EG:EF:GF,根據斜邊的長列方程即可得到結論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設EG=4k=AG,則EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點睛】本題考查了相似三角形的判定與性質,等腰三角形的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構相似三角形以及構造等腰三角形.9、D【解析】
連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.10、C【解析】試題分析:根據角平分線的性質可得CD=DE=1,根據Rt△ADE可得AD=2DE=2,根據題意可得△ADB為等腰三角形,則DE為AB的中垂線,則BD=AD=2,則BC=CD+BD=1+2=1.考點:角平分線的性質和中垂線的性質.二、填空題(本大題共6個小題,每小題3分,共18分)11、x(x+2)(x﹣2).【解析】試題分析:==x(x+2)(x﹣2).故答案為x(x+2)(x﹣2).考點:提公因式法與公式法的綜合運用;因式分解.12、5【解析】
由3AE=2EB,和EF∥BC,證明△AEF∽△ABC,得S△AEFS△ABC=425,結合S△AEF=1,可知S△ADC=S△ABC=254,再由AFFC【詳解】解:∵3AE=2EB,設AE=2a,BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴S△AEFS△ABC=(AEAB)2=(∵S△AEF=1,∴S△ABC=254∵四邊形ABCD為平行四邊形,∴S∵EF∥BC,∴AFFC=AEBE=2a∴S△ADFS△CDF∴S△ADF=25S△ADC=5故答案是:5【點睛】本題考查了圖形的相似和平行線分線段成比例定理,中等難度,找到相似比是解題關鍵.13、甲【解析】由圖表明乙這8次成績偏離平均數大,即波動大,而甲這8次成績,分布比較集中,各數據偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩定的是甲.故答案為甲.14、-5【解析】兩邊同時乘以(x+3)(x-3),得6-x2+9=-x2-3x,解得:x=-5,檢驗:當x=-5時,(x+3)(x-3)≠0,所以x=-5是分式方程的解,故答案為:-5.【點睛】本題考查了解分式方程,解題的關鍵是方程兩邊同時乘以最簡公分母,切記要進行檢驗.15、【解析】
根據△ABC、△EFD都是等邊三角形,可證得△AEF≌△BDE≌△CDF,即可求得AE+AF=AE+BE=a,然后根據切線長定理得到AH=(AE+AF-EF)=(a-b);,再根據直角三角形的性質即可求出△AEF的內切圓半徑.【詳解】解:如圖1,⊙I是△ABC的內切圓,由切線長定理可得:AD=AE,BD=BF,CE=CF,
∴AD=AE=[(AB+AC)-(BD+CE)]=[(AB+AC)-(BF+CF)]=(AB+AC-BC),如圖2,∵△ABC,△DEF都為正三角形,∴AB=BC=CA,EF=FD=DE,∠BAC=∠B=∠C=∠FED=∠EFD=∠EDF=60°,
∴∠1+∠2=∠2+∠3=120°,∠1=∠3;
在△AEF和△CFD中,,
∴△AEF≌△CFD(AAS);
同理可證:△AEF≌△CFD≌△BDE;
∴BE=AF,即AE+AF=AE+BE=a.
設M是△AEF的內心,過點M作MH⊥AE于H,
則根據圖1的結論得:AH=(AE+AF-EF)=(a-b);
∵MA平分∠BAC,
∴∠HAM=30°;
∴HM=AH?tan30°=(a-b)?=故答案為:.【點睛】本題主要考查的是三角形的內切圓、等邊三角形的性質、全等三角形的性質和判定,切線的性質,圓的切線長定理,根據已知得出AH的長是解題關鍵.16、1【解析】試題分析:將x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考點:一元二次方程的解.三、解答題(共8題,共72分)17、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解析】
(1)將點A坐標代入解析式,可求解析式;(2)一次函數和反比例函數解析式組成方程組,求出點B坐標,即可求△ABF的面積;(3)直接根據圖象可得.【詳解】(1)∵一次函數y=﹣x+b的圖象與反比例函數y=(k≠0)圖象交于A(﹣3,2)、B兩點,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函數解析式y=﹣,反比例函數解析式y=.(2)根據題意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由圖象可得:x<﹣2或0<x<4【點睛】本題考查了反比例函數圖象與一次函數圖象的交點問題,待定系數法求解析式,熟練運用函數圖象解決問題是本題的關鍵.18、(1)﹣2≤x<2;(2)x=.【解析】
(1)先求出不等式組中每個不等式的解集,再求出不等式組的解集即可;(2)先把分式方程轉化成整式方程,求出整式方程的解,再進行檢驗即可.【詳解】(1),∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式組的解集為﹣2≤x<2;(2)方程兩邊都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=,檢驗:把x=代入(2x﹣1)(x﹣2)≠0,所以x=是原方程的解,即原方程的解是x=.【點睛】本題考查了解一元一次不等式組和解分式方程,根據不等式的解集找出不等式組的解集是解(1)的關鍵,能把分式方程轉化成整式方程是解(2)的關鍵.19、2﹣【解析】試題分析:利用相反數和倒數的定義即可得出.先因式分解,再代入求出即可.試題解析:是的相反數,是的倒數,當時,點睛:只有符號不同的兩個數互為相反數.乘積為的兩個數互為倒數.20、(1);(1)11.【解析】
(1)根據正切的定義求出OA,證明△BAO∽△BEC,根據相似三角形的性質計算;(1)求出直線AB的解析式,解方程組求出點D的坐標,根據三角形CDE的面積=三角形CBE的面積+三角形BED的面積計算即可.【詳解】解:(1)∵tan∠ABO=,OB=4,∴OA=1,∵OE=1,∴BE=6,∵AO∥CE,∴△BAO∽△BEC,∴=,即=,解得,CE=3,即點C的坐標為(﹣1,3),∴反比例函數的解析式為:;(1)設直線AB的解析式為:y=kx+b,則,解得,,則直線AB的解析式為:,,解得,,,∴當D的坐標為(6,1),∴三角形CDE的面積=三角形CBE的面積+三角形BED的面積=×6×3+×6×1=11.【點睛】此題考查的是反比例函數與一次函數的交點問題,掌握待定系數法求函數解析式的一般步驟、求反比例函數與一次函數的交點的方法是解題的關鍵.21、(1)作圖見解析(2)為等腰三角形【解析】
(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.22、(1)y=x+2;(2)y=x+2;(2)①S=﹣2t+16,②點P的坐標是(,1);(3)存在,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).【解析】分析:(1)設直線DP解析式為y=kx+b,將D與B坐標代入求出k與b的值,即可確定出解析式;
(2)①當P在AC段時,三角形ODP底OD與高為固定值,求出此時面積;當P在BC段時,底邊OD為固定值,表示出高,即可列出S與t的關系式;
②設P(m,1),則PB=PB′=m,根據勾股定理求出m的值,求出此時P坐標即可;
(3)存在,分別以BD,DP,BP為底邊三種情況考慮,利用勾股定理及圖形與坐標性質求出P坐標即可.詳解:(1)如圖1,∵OA=6,OB=1,四邊形OACB為長方形,∴C(6,1).設此時直線DP解析式為y=kx+b,把(0,2),C(6,1)分別代入,得,解得則此時直線DP解析式為y=x+2;(2)①當點P在線段AC上時,OD=2,高為6,S=6;當點P在線段BC上時,OD=2,高為6+1﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②設P(m,1),則PB=PB′=m,如圖2,∵OB′=OB=1,OA=6,∴AB′==8,∴B′C=1﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=則此時點P的坐標是(,1);(3)存在,理由為:若△BDP為等腰三角形,分三種情況考慮:如圖3,①當BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根據勾股定理得:CP1==2,∴AP1=1﹣2,即P1(6,1﹣2);②當BP2=DP2時,此時P2(6,6);③當DB=DP3=8時,在Rt△DEP3中,DE=6,根據勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),綜上,滿足題意的P坐標為(6,6)或(6,2+2)或(6,1﹣2).點睛:此題屬于一次函數綜合題,涉及的知識有:待定系數法確定一次函數解析式,坐標與圖形性質,等腰三角形的性質,勾股定理,利用了分類討論的思想,熟練掌握待定系數法是解本題第一問的關鍵.23、15【解析】試題分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 關于bim合同樣本
- 會議家具采購合同標準文本
- 鐵路貨車裝車機行業跨境出海戰略研究報告
- 高性能熱塑性樹脂基復合材料企業制定與實施新質生產力戰略研究報告
- 船舶用夾層玻璃行業直播電商戰略研究報告
- 鋼瓶柜企業制定與實施新質生產力戰略研究報告
- 玻璃瓦行業跨境出海戰略研究報告
- 高壓化肥設備用無縫鋼管行業跨境出海戰略研究報告
- 隧道地基工程企業制定與實施新質生產力戰略研究報告
- 鉆探設備行業直播電商戰略研究報告
- (高清版)TDT 1036-2013 土地復墾質量控制標準
- 華潤認知能力測評題
- 大學生朋輩心理輔導智慧樹知到期末考試答案2024年
- 社會穩定風險評估 投標方案(技術標)
- 兩位數除以一位數(有余數)計算題200道
- 產后早開奶好處健康宣教
- 婚姻家庭指導服務工作方案
- 2024屆江蘇省期無錫市天一實驗校中考聯考英語試題含答案
- 北師大版數學三年級下冊《長方形的面積》
- 助產士的產婦心理疏導與支持技巧
- 八年級黃金矩形(公開課)
評論
0/150
提交評論