江蘇省鹽城市建湖中學2021-2022學年高考沖刺押題(最后一卷)數學試卷含解析_第1頁
江蘇省鹽城市建湖中學2021-2022學年高考沖刺押題(最后一卷)數學試卷含解析_第2頁
江蘇省鹽城市建湖中學2021-2022學年高考沖刺押題(最后一卷)數學試卷含解析_第3頁
江蘇省鹽城市建湖中學2021-2022學年高考沖刺押題(最后一卷)數學試卷含解析_第4頁
江蘇省鹽城市建湖中學2021-2022學年高考沖刺押題(最后一卷)數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件2.已知函數,則不等式的解集是()A. B. C. D.3.拋物線的準線方程是,則實數()A. B. C. D.4.過拋物線C:y2=4x的焦點F,且斜率為的直線交C于點M(M在x軸的上方),l為C的準線,點N在l上且MN⊥l,則M到直線NF的距離為()A. B. C. D.5.中國古代中的“禮、樂、射、御、書、數”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動;“書”,指各種歷史文化知識;“數”,數學.某校國學社團開展“六藝”課程講座活動,每藝安排一節,連排六節,一天課程講座排課有如下要求:“樂”不排在第一節,“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有()種.A.408 B.120 C.156 D.2406.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.7.若,滿足約束條件,則的取值范圍為()A. B. C. D.8.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20209.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.10.正的邊長為2,將它沿邊上的高翻折,使點與點間的距離為,此時四面體的外接球表面積為()A. B. C. D.11.是虛數單位,復數在復平面上對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,的系數是______.14.秦九韶算法是南宋時期數學家秦九韶提出的一種多項式簡化算法,如圖所示的框圖給出了利用秦九韶算法求多項式值的一個實例,若輸入,的值分別為4,5,則輸出的值為______.15.已知函數,若對于任意正實數,均存在以為三邊邊長的三角形,則實數k的取值范圍是_______.16.若,則的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)ax﹣lnx(a∈R).(1)若a=2時,求函數f(x)的單調區間;(2)設g(x)=f(x)1,若函數g(x)在上有兩個零點,求實數a的取值范圍.18.(12分)若函數為奇函數,且時有極小值.(1)求實數的值與實數的取值范圍;(2)若恒成立,求實數的取值范圍.19.(12分)過點作傾斜角為的直線與曲線(為參數)相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.20.(12分)某企業質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業是否對該箱余下的所有零件進行檢驗?請說明理由.21.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規定為考核優秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據圖中數據,估計這名學生考核優秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優秀的概率;(Ⅲ)記表示學生的考核成績在區間的概率,根據以往培訓數據,規定當時培訓有效.請根據圖中數據,判斷此次中學生冰雪培訓活動是否有效,并說明理由.22.(10分)設函數其中(Ⅰ)若曲線在點處切線的傾斜角為,求的值;(Ⅱ)已知導函數在區間上存在零點,證明:當時,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

構造長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個面中根據題意恰當的選取直線為m,n即可進行判斷.【詳解】如圖,取長方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令AD1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點睛】本題考點有兩個:①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n?兩方面進行判斷;②是空間的垂直關系,一般利用長方體為載體進行分析.2.B【解析】

由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.3.C【解析】

根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.4.C【解析】

聯立方程解得M(3,),根據MN⊥l得|MN|=|MF|=4,得到△MNF是邊長為4的等邊三角形,計算距離得到答案.【詳解】依題意得F(1,0),則直線FM的方程是y=(x-1).由得x=或x=3.由M在x軸的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4又∠NMF等于直線FM的傾斜角,即∠NMF=60°,因此△MNF是邊長為4的等邊三角形點M到直線NF的距離為故選:C.【點睛】本題考查了直線和拋物線的位置關系,意在考查學生的計算能力和轉化能力.5.A【解析】

利用間接法求解,首先對6門課程全排列,減去“樂”排在第一節的情況,再減去“射”和“御”兩門課程相鄰的情況,最后還需加上“樂”排在第一節,且“射”和“御”兩門課程相鄰的情況;【詳解】解:根據題意,首先不做任何考慮直接全排列則有(種),當“樂”排在第一節有(種),當“射”和“御”兩門課程相鄰時有(種),當“樂”排在第一節,且“射”和“御”兩門課程相鄰時有(種),則滿足“樂”不排在第一節,“射”和“御”兩門課程不相鄰的排法有(種),故選:.【點睛】本題考查排列、組合的應用,注意“樂”的排列對“射”和“御”兩門課程相鄰的影響,屬于中檔題.6.A【解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.7.B【解析】

根據約束條件作出可行域,找到使直線的截距取最值得點,相應坐標代入即可求得取值范圍.【詳解】畫出可行域,如圖所示:由圖可知,當直線經過點時,取得最小值-5;經過點時,取得最大值5,故.故選:B【點睛】本題考查根據線性規劃求范圍,屬于基礎題.8.C【解析】

首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.9.B【解析】

根據正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.10.D【解析】

如圖所示,設的中點為,的外接圓的圓心為,四面體的外接球的球心為,連接,利用正弦定理可得,利用球心的性質和線面垂直的性質可得四邊形為平行四邊形,最后利用勾股定理可求外接球的半徑,從而可得外接球的表面積.【詳解】如圖所示,設的中點為,外接圓的圓心為,四面體的外接球的球心為,連接,則平面,.因為,故,因為,故.由正弦定理可得,故,又因為,故.因為,故平面,所以,因為平面,平面,故,故,所以四邊形為平行四邊形,所以,所以,故外接球的半徑為,外接球的表面積為.故選:D.【點睛】本題考查平面圖形的折疊以及三棱錐外接球表面積的計算,還考查正弦定理和余弦定理,折疊問題注意翻折前后的變量與不變量,外接球問題注意先確定外接球的球心的位置,然后把半徑放置在可解的直角三角形中來計算,本題有一定的難度.11.D【解析】

求出復數在復平面內對應的點的坐標,即可得出結論.【詳解】復數在復平面上對應的點的坐標為,該點位于第四象限.故選:D.【點睛】本題考查復數對應的點的位置的判斷,屬于基礎題.12.A【解析】

由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先將原式展開成,發現中不含,故只研究后面一項即可得解.【詳解】,依題意,只需求中的系數,是.故答案為:-40【點睛】本題考查二項式定理性質,關鍵是先展開再利用排列組合思想解決,屬于基礎題.14.1055【解析】

模擬執行程序框圖中的程序,即可求得結果.【詳解】模擬執行程序如下:,滿足,,滿足,,滿足,,滿足,,不滿足,輸出.故答案為:1055.【點睛】本題考查程序框圖的模擬執行,屬基礎題.15.【解析】

根據三角形三邊關系可知對任意的恒成立,將的解析式用分離常數法變形,由均值不等式可得分母的取值范圍,則整個式子的取值范圍由的符號決定,故分為三類討論,根據函數的單調性求出函數值域,再討論,轉化為的最小值與的最大值的不等式,進而求出的取值范圍.【詳解】因為對任意正實數,都存在以為三邊長的三角形,故對任意的恒成立,,令,則,當,即時,該函數在上單調遞減,則;當,即時,,當,即時,該函數在上單調遞增,則,所以,當時,因為,,所以,解得;當時,,滿足條件;當時,,且,所以,解得,綜上,,故答案為:【點睛】本題考查參數范圍,考查三角形的構成條件,考查利用函數單調性求函數值域,考查分類討論思想與轉化思想.16.8【解析】

根據,利用基本不等式可求得函數最值.【詳解】,,當且僅當且,即時,等號成立.時,取得最小值.故答案為:【點睛】本題考查基本不等式,構造基本不等式的形式是解題關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)單調遞減區間為(0,1),單調遞增區間為(1,+∞)(2)(3,2e]【解析】

(1)當a=2時,求出,求解,即可得出結論;(2)函數在上有兩個零點等價于a=2x在上有兩解,構造函數,,利用導數,可分析求得實數a的取值范圍.【詳解】(1)當a=2時,定義域為,則,令,解得x1,或x1(舍去),所以當時,單調遞減;當時,單調遞增;故函數的單調遞減區間為,單調遞增區間為,(2)設,函數g(x)在上有兩個零點等價于在上有兩解令,,則,令,,顯然,在區間上單調遞增,又,所以當時,有,即,當時,有,即,所以在區間上單調遞減,在區間上單調遞增,時,取得極小值,也是最小值,即,由方程在上有兩解及,可得實數a的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性極值與最值、等價轉化思想以及數形結合思想,考查邏輯推理、數學計算能力,屬于中檔題.18.(1),;(2)【解析】

(1)由奇函數可知在定義域上恒成立,由此建立方程,即可求出實數的值;對函數進行求導,,通過導數求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數可知在上為單調減函數,由可得,從而可求實數的取值范圍.【詳解】(1)由函數為奇函數,得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調遞增,無極值點;所以,解得,取,則又函數的圖象在區間上連續不間斷,故由函數零點存在性定理知在區間上,存在為函數的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數,所以,當時,,即恒成立,故在上為單調減函數,其中.則可轉化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數求函數的最值,考查了奇函數的定義,考查了轉化的思想.對于恒成立的問題,常轉化為求的最小值,使;對于恒成立的問題,常轉化為求的最大值,使.19.(1);(2).【解析】

(1)將曲線的參數方程消參得到普通方程;(2)寫出直線MN的參數方程,將參數方程代入曲線方程,并將其化為一個關于的一元二次方程,根據,結合韋達定理和余弦函數的性質,即可求出的最小值.【詳解】(1)由曲線C的參數方程(是參數),可得,即曲線C的一般方程為.(2)直線MN的參數方程為(t為參數),將直線MN的參數方程代入曲線,得,整理得,設M,N對應的對數分別為,,則,當時,取得最小值為.【點睛】該題考查的是有關參數方程的問題,涉及到的知識點有參數方程向普通方程的轉化,直線的參數方程的應用,屬于簡單題目.20.(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進行比較,判斷中位數落在的區間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據余下零件個數服從二項分布,可得余下零件個數的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數落在假設尺寸中位數為所以所以這個零件尺寸的中位數(2)尺寸在的個數

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論