




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
袁裕澤yuanyuze@126.com參考書目:盛驟,謝式千,潘承毅編
《概率論與數理統計》第二版高教出版社在我們所生活的世界上,
充滿了不確定性
從扔硬幣、擲骰子和玩撲克等簡單的機會游戲,到復雜的社會現象;從嬰兒的誕生,到世間萬物的繁衍生息;從流星墜落,到大自然的千變萬化……,我們無時無刻不面臨著不確定性和隨機性.A.太陽從東方升起;B.明天的最高溫度;C.上拋物體一定下落;D.新生嬰兒的體重.下面的現象哪些是隨機現象?
隨機現象帶有隨機性、偶然性的現象.隨機現象是不是沒有規律?否!在一定條件下對隨機現象進行大量觀測會發現某種規律性.例如:
一門火炮在一定條件下進行射擊,個別炮彈的彈著點可能偏離目標而有隨機性的誤差,但大量炮彈的彈著點則表現出一定的規律性,如一定的命中率,一定的分布規律等等.再如:
測量一物體的長度,由于儀器及觀察受到的環境的影響,每次測量的結果可能是有差異的.但多次測量結果的平均值隨著測量次數的增加逐漸穩定于一常數,并且諸測量值大多落在此常數的附近,越遠則越少,因而其分布狀況呈現“兩頭小,中間大,左右基本對稱”.
隨機現象有其偶然性的一面,也有其必然性的一面,這種必然性表現在大量重復試驗或觀察中呈現出的固有規律性,稱為隨機現象的統計規律性.
概率論正是研究隨機現象統計規律性的一門學科.現在,就讓我們一起,步入這充滿隨機性的世界,開始第一步的探索和研究.§1.1樣本空間與隨機事件為了研究隨機現象,就要對研究對象進行觀察試驗,即隨機試驗,簡稱試驗。記為E一、隨機試驗
壽命試驗測試在同一工藝條件下生產出的燈泡的壽命.統計一天中進入某商店的顧客人數.擲一枚硬幣直到出現正面為止,觀察擲該硬幣的次數。隨機試驗具有如下特點:(1)可重復性:試驗可在相同條件下重復進行.(2)可觀察性:試驗結果是可觀察的,其一切可能結果是明確的.(3)隨機性:每次試驗可能出現的結果不只一個,但在試驗前無法預言會出現哪一個.現代集合論為表述隨機試驗E提供了一個方便的工具.
二、樣本空間隨機試驗的每個可能結果稱樣本點,記為ω。全體樣本點的集合稱為樣本空間,記為Ω。例1.1.1:拋擲一枚硬幣例1.1.2:投擲二個骰子,觀察出現的點數.例題求出樣本點與樣本空間求出樣本點與樣本空間23479108615
例1.1.3:一個袋子中裝有10個大小、形狀完全相同的球.將球編號為1-10.把球攪勻,蒙上眼睛,從中任取一球.用集合來表示下列事件:A~"取出的球號為偶數"B~"取出的球號大于8"D~"取出的球號不大于10"C~"取出的球號大于10"例1.1.4:觀察某電話交換臺在一天內收到的呼叫次數.求出樣本點與樣本空間例1.1.5:觀察燈泡的壽命.求出樣本點與樣本空間例:從52張撲克牌中,任意地抽取一張牌,分兩種情況描述樣本空間:①不考慮花色②考慮花色思考題23479108615
例1.1.3:一個袋子中裝有10個大小、形狀完全相同的球.將球編號為1-10.把球攪勻,蒙上眼睛,從中任取一球.用集合來表示下列事件:A~"取出的球號為偶數"B~"取出的球號大于8"D~"取出的球號不大于10"C~"取出的球號大于10"在隨機實驗中可能發生也可能不發生的現象稱為隨機事件,簡稱事件.用A,B,C,…..表示.
三、隨機事件事件就是由樣本點組成的某個集合..
ΩA樣本點ω.....隨機事件是由基本事件復合而成的,為樣本空間的子集.隨機事件與樣本空間所有事件全體事件集,記為ψ.即則,稱為事件基本事件復合事件(實驗中不可再分解的事件)(兩個或一些基本事件并在一起,就構成一個復合事件)"擲出奇數點"“擲出1點”在擲骰子試驗中,“點數小于7”和“點數為8”是隨機事件嗎?兩個特殊的事件:必件然事即在試驗中必定發生的事件,記為Ω;
不件可事能即在一次試驗中不可能發生的事件,記為φ(空集)
。事件用集合表示時,如何理解“事件發生”?當且僅當屬于集合的某一個樣本點在實驗中出現例1.1.7:在投擲一骰子的試驗中,設A:“點數為6”,B:“點數小于5”,C:“點數小于5的偶數”事件A為基本事件,事件B為隨機事件,B={1,2,3,4}事件C為隨機事件,C={2,4}樣本點:樣本空間為1,2,3,4,5,6點{1,2,3,4,5,6}隨機事件B發生B所包含的樣本點中有一個發生例:對同一目標重復進行兩次射擊,則據要求不同,基本事件可取:
(1)擊中,不擊中;或(2)沒擊中,擊中一次,擊中兩次;注意基本事件的“基本”是相對于試驗的目的和要求而言的.四、事件間的關系及運算(…)定義1:(不能都發生)下列問題討論都是假定在同一樣本空間Ω
進行的。例1.1.8:描述下
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025國內銷售代理合同范文
- 2025企業宣傳音樂委約創作合同
- 2025二手客車買賣合同范本
- 機房維保標書
- 霍納法則,計算hashcode
- 應對市場波動的倉庫策略計劃
- 代發工資合同樣本
- 2025標準車輛買賣合同協議書
- 小班創意繪畫教學計劃
- 調動員工積極性的措施計劃
- 國家糧食和物資儲備局招聘考試真題2024
- 部編版六年級語文下冊期中考試卷(有答案)
- 生物-華大新高考聯盟2025屆高三3月教學質量測評試題+答案
- 與信仰對話 課件-2024年入團積極分子培訓
- 2024《整治形式主義為基層減負若干規定》全文課件
- 2024年社區工作者考試必背1000題題庫【含答案】
- SYT 0452-2021 石油天然氣金屬管道焊接工藝評定-PDF解密
- 研學旅行PPT模板
- 古代詩歌題材分類鑒賞
- 《招標采購》PPT課件.ppt
- 齒輪坯鍛造工藝卡
評論
0/150
提交評論