2022年天津市部分區數學九上期末質量檢測試題含解析_第1頁
2022年天津市部分區數學九上期末質量檢測試題含解析_第2頁
2022年天津市部分區數學九上期末質量檢測試題含解析_第3頁
2022年天津市部分區數學九上期末質量檢測試題含解析_第4頁
2022年天津市部分區數學九上期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應點是G,過點B作BE⊥CG,垂足為E,且在AD上,BE交PC于點F,那么下列選項正確的是()①BP=BF;②如圖1,若點E是AD的中點,那么△AEB≌△DEC;③當AD=25,且AE<DE時,則DE=16;④在③的條件下,可得sin∠PCB=;⑤當BP=9時,BE?EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤2.方程的解是()A. B. C., D.,3.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,,弧AD=弧CD.則∠DAC等于()A. B. C. D.4.下列結論正確的是()A.三角形的外心是三條角平分線的交點B.平分弦的直線垂直于弦C.弦的垂直平分線必平分弦所對的兩條弧D.直徑是圓的對稱軸5.一次函數y=﹣3x﹣2的圖象和性質,表述正確的是()A.y隨x的增大而增大 B.在y軸上的截距為2C.與x軸交于點(﹣2,0) D.函數圖象不經過第一象限6.已知一個三角形的兩個內角分別是40°,60°,另一個三角形的兩個內角分別是40°,80°,則這兩個三角形()A.一定不相似 B.不一定相似 C.一定相似 D.不能確定7.如圖,在△ABC中,點D,E分別在AB,AC上,DE∥BC,且DE將△ABC分成面積相等的兩部分,那么的值為()A.﹣1 B.+1 C.1 D.8.若與相似且對應中線之比為,則周長之比和面積比分別是()A., B., C., D.,9.正五邊形的每個內角度數為()A.36° B.72° C.108° D.120°10.如圖,在△ABC中,∠C=90°,∠BAC=70°,將△ABC繞點A順時針旋轉70°,B,C旋轉后的對應點分別是B′和C′,連接BB′,則∠ABB′的度數是()A.35° B.40° C.45° D.55°二、填空題(每小題3分,共24分)11.如圖,分別為矩形的邊,的中點,若矩形與矩形相似,則相似比等于__________.12.大潤發超市對去年全年每月銷售總量進行統計,為了更清楚地看出銷售總量的變化趨勢,應選用________統計圖來描述數據.13.某公司快遞員甲勻速騎車前往某小區送物件,出發幾分鐘后,快遞員乙發現甲的手機落在公司,無法聯系,于是乙勻速騎車去追趕甲.乙剛出發2分鐘時,甲也發現自己手機落在公司,立刻按原路原速騎車回公司,2分鐘后甲遇到乙,乙把手機給甲后立即原路原速返回公司,甲繼續原路原速趕往某小區送物件,甲乙兩人相距的路程y(米)與甲出發的時間x(分鐘)之間的關系如圖所示(乙給甲手機的時間忽略不計).則乙回到公司時,甲距公司的路程是______米.14.在平面直角坐標系中,正方形ABCD的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作正方形,延長交軸于點,作正方形,…按這樣的規律進行下去,第個正方形的面積為_____________.15.如圖,已知⊙O的半徑為1,AB,AC是⊙O的兩條弦,且AB=AC,延長BO交AC于點D,連接OA,OC,若AD2=AB?DC,則OD=__.16.如圖,點A是反比例函數y=(x>0)圖象上一點,直線y=kx+b過點A并且與兩坐標軸分別交于點B,C,過點A作AD⊥x軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______.17.如圖,在中,點是邊的中點,⊙經過、、三點,交于點,是⊙的直徑,是上的一個點,且,則___________.18.在△ABC中,∠ABC=30°,AB=,AC=1,則∠ACB的度數為____________.三、解答題(共66分)19.(10分)如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地,規劃部門計劃將陰影部分進行綠化,中間將修建一座邊長為(a+b)米的正方形雕像.(1)試用含a、b的式子表示綠化部分的面積(結果要化簡).(2)若a=3,b=2,請求出綠化部分的面積.20.(6分)已知△ABC在平面直角坐標系中的位置如圖所示.(1)分別寫出圖中點A和點C的坐標;(2)畫出△ABC繞點C按順時針方向旋轉90°后的△A′B′C′;(3)求點A旋轉到點A′所經過的路線長(結果保留π).21.(6分)用配方法解方程:22.(8分)已知拋物線y=2x2-12x+13(1)當x為何值時,y有最小值,最小值是多少?(2)當x為何值時,y隨x的增大而減小(3)將該拋物線向右平移2個單位,再向上平移2個單位,請直接寫出新拋物線的表達式23.(8分)如圖,已知在正方形ABCD中,M是BC邊上一定點,連接AM,請用尺規作圖法,在AM上求作一點P,使得△DPA∽△ABM(不寫做法保留作圖痕跡)24.(8分)如圖,已知拋物線經過的三個頂點,其中點,點,軸,點是直線下方拋物線上的動點.(1)求拋物線的解析式;(2)過點且與軸平行的直線與直線、分別交與點、,當四邊形的面積最大時,求點的坐標;(3)當點為拋物線的頂點時,在直線上是否存在點,使得以、、為頂點的三角形與相似,若存在,直接寫出點的坐標;若不存在,請說明理由.25.(10分)(1)某學校“學習落實”數學興趣小組遇到這樣一個題目:如圖1,在中,點在線段上,,,,,求的長.經過數學小組成員討論發現,過點作,交的延長線于點,通過構造就可以解決問題(如圖2)請回答:,.(2)請參考以上解決思路,解決問題:如圖在四邊形中對角線與相交于點,,,,.求的長.26.(10分)隨著經濟的快速發展,環境問題越來越受到人們的關注,某校學生會為了解節能減排、垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調查結果繪制成下面兩個統計圖.(1)本次調查的學生共有人,估計該校1200名學生中“不了解”的人數是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】易證BE∥PG可得∠FPG=∠PFB,再由折疊的性質得∠FPB=∠FPG,所以∠FPB=∠PFB,根據等邊對等角即可判斷①;由矩形的性質得∠A=∠D=90°,AB=CD,用SAS即可判定全等,從而判斷②;證明△ABE∽△DEC,得出比例式建立方程求出DE,從而判斷③;證明△ECF∽△GCP,進而求出PC,即可得到sin∠PCB的值,從而判斷④;證明△GEF∽△EAB,利用對應邊成比例可得出結論,從而判斷⑤.【詳解】①∵四邊形ABCD為矩形,頂點B的對應點是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折疊的性質可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正確;②∵四邊形ABCD為矩形,∴∠A=∠D=90°,AB=DC又∵點E是AD的中點,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正確;③當AD=25時,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正確;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴設BP=BF=PG=a,則EF=BE-BF=15-a,由折疊性質可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④錯誤.⑤如圖,連接FG,

∵∠GEF=∠PGC=90°,

∴∠GEF+∠PGC=180°,

∴BF∥PG

∵BF=PG,

∴四邊形BPGF是菱形,

∴BP∥GF,GF=BP=9

∴∠GFE=∠ABE,

∴△GEF∽△EAB,

∴BE?EF=AB?GF=12×9=108,故⑤正確;①②③⑤正確,故選C.【點睛】本題考查四邊形綜合問題,難度較大,需要熟練掌握全等三角形的判定,相似三角形的判定和性質,以及勾股定理和三角函數,綜合運用所學幾何知識是關鍵.2、C【分析】先把從方程的右邊移到左邊,并把兩邊都除以4化簡,然后用因式分解法求解即可.【詳解】∵,∴,∴,∴,∴,.故選C.【點睛】本題考查了一元二次方程的解法,常用的方法有直接開平方法、配方法、因式分解法、求根公式法,靈活選擇合適的方法是解答本題的關鍵.3、C【分析】利用圓周角定理得到,則,再根據圓內接四邊形的對角互補得到,又根據弧AD=弧CD得到,然后根據等腰三角形的性質和三角形的內角和定理可得出的度數.【詳解】∵AB為⊙O的直徑∵弧AD=弧CD故選:C.【點睛】本題考查了圓周角定理、圓內接四邊形的性質、等腰三角形的性質等知識點,利用圓內接四邊形的性質求出的度數是解題關鍵.4、C【分析】根據三角形的外心定義可以對A判斷;根據垂徑定理的推論即可對B判斷;根據垂徑定理即可對C判斷;根據對稱軸是直線即可對D判斷.【詳解】A.三角形的外心是三邊垂直平分線的交點,所以A選項錯誤;B.平分弦(不是直徑)的直徑垂直于弦,所以B選項錯誤;C.弦的垂直平分線必平分弦所對的兩條弧,所以C選項正確;D.直徑所在的直線是圓的對稱軸,所以D選項錯誤.故選:C.【點睛】本題考查了三角形的外接圓與外心、垂徑定理、圓的有關概念,解決本題的關鍵是掌握圓的知識.5、D【解析】根據一次函數的圖象和性質,依次分析各個選項,選出正確的選項即可.【詳解】A.一次函數y=﹣3x﹣2的圖象y隨著x的增大而減小,即A項錯誤;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y軸的截距為﹣2,即B項錯誤;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即與x軸交于點(,0),即C項錯誤;D.函數圖象經過第二三四象限,不經過第一象限,即D項正確.故選D.【點睛】本題考查了一次函數圖象上點的坐標特征,一次函數的性質,正確掌握一次函數圖象的增減性和一次函數的性質是解題的關鍵.6、C【解析】試題解析:∵一個三角形的兩個內角分別是∴第三個內角為又∵另一個三角形的兩個內角分別是∴這兩個三角形有兩個內角相等,∴這兩個三角形相似.故選C.點睛:兩組角對應相等,兩三角形相似.7、D【分析】由條件DE∥BC,可得△ADE∽△ABC,又由DE將△ABC分成面積相等的兩部分,可得S△ADE:S△ABC=1:1,根據相似三角形面積之比等于相似比的平方,可得答案.【詳解】如圖所示:∵DE∥BC,∴△ADE∽△ABC.設DE:BC=1:x,則由相似三角形的性質可得:S△ADE:S△ABC=1:x1.又∵DE將△ABC分成面積相等的兩部分,∴x1=1,∴x,即.故選:D.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似三角形的性質是解答本題的關鍵.8、B【分析】直接根據相似三角形的性質進行解答即可.【詳解】解:與相似,且對應中線之比為,其相似比為,與周長之比為,與面積比為,故選:B.【點睛】本題考查的是相似三角形的性質,熟知相似三角形周長的比等于相似比,相似三角形的對應線段(對應中線、對應角平分線、對應邊上的高)的比也等于相似比,相似三角形面積比是相似比的平方是解答此題的關鍵.9、C【解析】根據多邊形內角和公式:,得出正五邊形的內角和,再根據正五邊形的性質:五個角的角度都相等,即可得出每個內角的度數.【詳解】解:故選:C【點睛】本題考查的是多邊形的內角和公式以及正五邊形的性質,掌握這兩個知識點是解題的關鍵.10、D【解析】在△ABB'中根據等邊對等角,以及三角形內角和定理,即可求得∠ABB'的度數.【詳解】由旋轉可得,AB=AB',∠BAB'=70°,∴∠ABB'=∠AB'B=(180°-∠BAB′)=55°.故選:D.【點睛】本題考查了旋轉的性質,在旋轉過程中根據旋轉的性質確定相等的角和相等的線段是關鍵.二、填空題(每小題3分,共24分)11、(或)【分析】根據矩形的性質可得EF=AB=CD,AE=AD=BC,根據相似的性質列出比例式,即可得出,從而求出相似比.【詳解】解:∵分別為矩形的邊,的中點,∴EF=AB=CD,AE=AD=BC,∵矩形與矩形相似∴∴∴∴相似比=(或)故答案為:(或).【點睛】此題考查的是求相似多邊形的相似比,掌握相似多邊形的性質是解決此題的關鍵.12、折線【解析】試題解析:根據題意,得要求清楚地表示銷售總量的總趨勢是上升還是下降,結合統計圖各自的特點,應選用折線統計圖,13、6000【分析】根據函數圖象和題意可以分別求得甲乙的速度和乙從與甲相遇到返回公司用的時間,從而可以求得當乙回到公司時,甲距公司的路程.【詳解】解:由題意可得,甲的速度為:4000÷(12-2-2)=500米/分,乙的速度為:=1000米/分,乙從與甲相遇到返回公司用的時間為4分鐘,則乙回到公司時,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案為6000.【點睛】本題考查一次函數的應用,解答本題的關鍵是明確題意,利用數形結合的思想解答.14、【分析】推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,證△DOA∽△ABA1,得出,求出AB,BA1,求出邊長A1C=,求出面積即可;求出第2個正方形的邊長是,求出面積,再求出第3個正方形的面積;依此類推得出第n個正方形的邊長,求出面積即可.【詳解】∵四邊形ABCD是正方形,

∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,

∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,

∴∠ADO=∠BAA1,

∵∠DOA=∠ABA1,

∴△DOA∽△ABA1,

∴,

∵AB=AD=∴BA1=∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,面積是;同理第3個正方形的邊長是面積是;第4個正方形的邊長是,面積是…,

第n個正方形的邊長是,面積是故答案為:【點睛】本題考查了正方形的性質,相似三角形的性質和判定,勾股定理的應用,解此題的關鍵是根據計算的結果得出規律,題目比較好,但是一道比較容易出錯的題目15、.【分析】可證△AOB≌△AOC,推出∠ACO=∠ABD,OA=OC,∠OAC=∠ACO=∠ABD,∠ADO=∠ADB,即可證明△OAD∽△ABD;依據對應邊成比例,設OD=x,表示出AB、AD,根據AD2=AB?DC,列方程求解即可.【詳解】在△AOB和△AOC中,∵AB=AC,OB=OC,OA=OA,∴△AOB≌△AOC(SSS),∴∠ABO=∠ACO,∵OA=OA,∴∠ACO=∠OAD,∵∠ADO=∠BDA,∴△ADO∽△BDA,∴,設OD=x,則BD=1+x,∴,∴OD,AB,∵DC=AC﹣AD=AB﹣AD,AD2=AB?DC,()2═(),整理得:x2+x﹣1=0,解得:x或x(舍去),因此AD,故答案為.【點睛】本題考查了圓的綜合題、全等三角形的判定和性質、相似三角形的判定和性質、比例中項等知識,解題的關鍵是靈活運用所學知識解決問題,利用參數解決問題是數學解題中經常用到的方法.16、1﹣1.【分析】先用三角形BOC的面積得出k=①,再判斷出△BOC∽△BDA,得出a1k+ab=4②,聯立①②求出ab,即可得出結論.【詳解】設A(a,)(a>0),∴AD=,OD=a,∵直線y=kx+b過點A并且與兩坐標軸分別交于點B,C,∴C(0,b),B(﹣,0),∵△BOC的面積是4,∴S△BOC=OB×OC=××b=4,∴b1=8k,∴k=①∴AD⊥x軸,∴OC∥AD,∴△BOC∽△BDA,∴,∴,∴a1k+ab=4②,聯立①②得,ab=﹣4﹣4(舍)或ab=4﹣4,∴S△DOC=OD?OC=ab=1﹣1.故答案為1﹣1.【點睛】此題主要考查了坐標軸上點的特點,反比例函數上點的特點,相似三角形的判定和性質,得出a1k+ab=4是解本題的關鍵.17、1【分析】根據題意得到△BDC是等腰三角形,外角和定理可得∠ADC也就是要求的∠AFC.【詳解】連接DE,∵CD是⊙的直徑,∴∠DEC=90°,DE⊥BC,∵E是BC的中點,∴DE是BC的垂直平分線,則BD=CD,∴∠DCE=∠B=24°,∴∠ADC=∠DCE+∠B=1°,∴∠AFC=∠ADC=1°,故填:1.【點睛】本題考查了線段垂直平分線的性質、外角和定理、同弧所對的圓周角相等,綜合性較強,是中考填空題、選擇題的常見題型.18、60°或120°.【分析】作AD⊥BC于D,先在Rt△ABD中求出AD的長,解直角三角形求出∠ACD,即可求出答案.【詳解】如圖,作AD⊥BC于D,如圖1,在Rt△ABD中,∠ABC=30°,AB=,AC=1,∴AD=AB=,在Rt△ACD中,sinC=,∴∠C=60°,即∠ACB=60°,同理如圖2,同理可得∠ACD=60°,∴∠ACB=120°.故答案為60°或120°.【點睛】此題主要考查三角函數的應用,解題的關鍵是根據題意分情況作出圖形求解.三、解答題(共66分)19、(1)5a2+3ab;(2)63.【分析】(1)由長方形面積減去正方形面積表示出綠化面積即可;(2)將a與b的值代入計算即可求出值.【詳解】解:(1)根據題意得:(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab;(2)當a=3,b=2時,原式=.【點睛】本題考查了整式的混合運算,熟練掌握整式混合運算的法則是解本題的關鍵.20、(1)、(2)見解析(3)【解析】試題分析:(1)根據點的平面直角坐標系中點的位置寫出點的坐標;(2)根據旋轉圖形的性質畫出旋轉后的圖形;(3)點A所經過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據勾股定理可得:AC=3,則.考點:圖形的旋轉、扇形的弧長計算公式.21、x1=+1,x2=+1【分析】先把方程進行整理,然后利用配方法進行解方程,即可得到答案.【詳解】解:∵,∴,∴,∴,∴x1=+1,x2=+1.【點睛】本題考查了解一元二次方程,解題的關鍵是熟練掌握配方法進行解一元二次方程.22、(1)當x=3時,y有最小值,最小值是-5;(2)當x<3時,y隨x的增大而減小;(3)y=2x2-20x+47.【分析】(1)將二次函數的一般式轉化為頂點式,即可求出結論;(2)根據拋物線的開口方向和對稱軸左右兩側的增減性即可得出結論;(3)根據拋物線的平移規律:括號內左加右減,括號外上加下減,即可得出結論.【詳解】解:(1)y=2x2-12x+13=2(x2-6x)+13=2(x2-6x+9-9)+13=2(x-3)2-5∵2>0∴當x=3時,y有最小值,最小值是-5;(2)∵2>0,對稱軸為x=3∴拋物線的開口向上∴當x<3時,y隨x的增大而減小;(3)∵將該拋物線向右平移2個單位,再向上平移2個單位,∴平移后的解析式為:y=2(x-3-2)2-5+2=2(x-5)2-3即新拋物線的表達式為y=2x2-20x+47【點睛】此題考查的是二次函數的圖像及性質,掌握用二次函數的頂點式求最值、二次函數的增減性和二次函數的平移規律是解決此題的關鍵.23、作圖見解析.【解析】根據尺規作圖的方法過點D作AM的垂線即可得【詳解】如圖所示,點P即為所求作的點.【點睛】本題考查了尺規作圖——作垂線,熟練掌握作圖的方法是解題的關鍵.24、(1);(2);(3)存在,,【分析】(1)用待定系數法求出拋物線解析式即可;(2)設點P(m,),表示出PE=,再用S四邊形AECP=S△AEC+S△APC=AC×PE,建立函數關系式,求出最值即可;(3)先判斷出PF=CF,再得到∠PCA=∠EAC,以C、P、Q為頂點的三角形與△ABC相似,分兩種情況計算即可.【詳解】(1)∵點,在拋物線上,∴,∴,∴拋物線的解析式為,(2)∵AC∥x軸,A(0,3)∴=3,∴x1=?6,x2=0,∴點C的坐標(?8,3),∵點,,求得直線AB的解析式為y=?x+3,設點P(m,)∴E(m,?m+3)∴PE=?m+3?()=,∵AC⊥EP,AC=8,∴S四邊形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×8×(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論