




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知點A、B、C、D、E、F是半徑為r的⊙O的六等分點,分別以A、D為圓心,AE和DF長為半徑畫圓弧交于點P.以下說法正確的是()①∠PAD=∠PDA=60o;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④2.如圖,在?ABCD中,F為BC的中點,延長AD至E,使DE:AD=1:3,連接FF交DC于點G,則DG:CG=()A.1:2 B.2:3 C.3:4 D.2:53.如圖的幾何體,它的主視圖是()A. B. C. D.4.若反比例函數y=的圖象經過點(2,﹣6),則k的值為()A.﹣12 B.12 C.﹣3 D.35.如果兩個相似三角形的相似比是1:2,那么它們的面積比是()A.1:2 B.1:4 C.1: D.2:16.已知點(3,﹣4)在反比例函數的圖象上,則下列各點也在該反比例函數圖象上的是()A.(3,4) B.(﹣3,﹣4) C.(﹣2,6) D.(2,6)7.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數的圖象與有交點,則的取值范圍是().A. B. C. D.8.﹣2019的倒數的相反數是()A.﹣2019 B. C. D.20199.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的直三棱柱紙盒,則該紙盒側面積的最大值是()A.cm2 B.cm2 C.cm2 D.cm210.如圖,AB為⊙O的直徑,CD是⊙O的弦,∠ADC=35°,則∠CAB的度數為(
)A.35° B.45° C.55° D.65°11.如圖,在△ABC中,DE∥BC,=,DE=4cm,則BC的長為()A.8cm B.12cm C.11cm D.10cm12.菱形具有而矩形不具有的性質是()A.對邊相等 B.對角相等 C.對角線互相平分 D.對角線互相垂直二、填空題(每題4分,共24分)13.已知一組數據:4,2,5,0,1.這組數據的中位數是_____.14.若線段AB=6cm,點C是線段AB的一個黃金分割點(AC>BC),則AC的長為cm(結果保留根號).15.河堤橫截面如圖所示,堤高為4米,迎水坡的坡比為1:(坡比=),那么的長度為____________米.16.如圖,是的直徑,弦與弦長度相同,已知,則________.17.如圖,校園內有一棵與地面垂直的樹,數學興趣小組兩次測量它在地面上的影子,第一次是陽光與地面成60°角時,第二次是陽光與地面成30°角時,兩次測量的影長相差8米,則樹高_____________米(結果保留根號).18.邊心距為的正六邊形的半徑為_______.三、解答題(共78分)19.(8分)某市某幼兒園“六一”期間舉行親子游戲,主持人請三位家長分別帶自己的孩子參加游戲.主持人準備把家長和孩子重新組合完成游戲,A、B、C分別表示三位家長,他們的孩子分別對應的是a、b、c.(1)若主持人分別從三位家長和三位孩子中各選一人參加游戲,恰好是A、a的概率是多少(直接寫出答案)?(2)若主持人先從三位家長中任選兩人為一組,再從孩子中任選兩人為一組,四人共同參加游戲,恰好是兩對家庭成員的概率是多少.(畫出樹狀圖或列表)20.(8分)已知關于x的一元二次方程x1﹣1(a﹣1)x+a1﹣a﹣1=0有兩個不相等的實數根x1,x1.(1)若a為正整數,求a的值;(1)若x1,x1滿足x11+x11﹣x1x1=16,求a的值.21.(8分)如圖,點A是我市某小學,在位于學校南偏西15°方向距離120米的C點處有一消防車.某一時刻消防車突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發火災,消防隊必須立即沿路線CF趕往救火.已知消防車的警報聲傳播半徑為110米,問消防車的警報聲對學校是否會造成影響?若會造成影響,已知消防車行駛的速度為每小時60千米,則對學校的影響時間為幾秒?(≈3.6,結果精確到1秒)22.(10分)拋物線y=﹣x2+bx+c的對稱軸為直線x=2,且頂點在x軸上.(1)求b、c的值;(2)畫出拋物線的簡圖并寫出它與y軸的交點C的坐標;(3)根據圖象直接寫出:點C關于直線x=2對稱點D的坐標;若E(m,n)為拋物線上一點,則點E關于直線x=2對稱點的坐標為(用含m、n的式子表示).23.(10分)如圖,在平面直角坐標系中,雙曲線和直線y=kx+b交于A,B兩點,點A的坐標為(﹣3,2),BC⊥y軸于點C,且OC=6BC.(1)求雙曲線和直線的解析式;(2)直接寫出不等式的解集.24.(10分)市化工材料經銷公司購進一種化工原料若干千克,價格為每千克30元.物價部門規定其銷售單價不高于每千克60元,不低于每千克30元.經市場調查發現:日銷售量y(千克)是銷售單價x(元)的一次函數,且當x=45時,y=10;x=55時,y=1.在銷售過程中,每天還要支付其他費用500元.(1)求出y與x的函數關系式,并寫出自變量x的取值范圍;(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數關系式;(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元?25.(12分)某校為了豐富學生課余生活,計劃開設以下社團:A.足球、B.機器人、C.航模、D.繪畫,學校要求每人只能參加一個社團小麗和小亮準備隨機報名一個項目.(1)求小亮選擇“機器人”社團的概率為______;(2)請用樹狀圖或列表法求兩人至少有一人參加“航模”社團的概率.26.如圖,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.
參考答案一、選擇題(每題4分,共48分)1、C【解析】解:∵A、B、C、D、E、F是半徑為r的⊙O的六等分點,∴,∴AE=DF<AD,根據題意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①錯誤;連接OP、AE、DE,如圖所示,∵AD是⊙O的直徑,∴AD>AE=AP,②△PAO≌△ADE錯誤,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正確;∵AO:OP:PA=r:r:r=1::.∴④正確;說法正確的是③④,故選C.2、B【分析】由平行四邊形的性質可得AD=BC,AD∥BC,可證△DEG∽△CFG,可得=.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∵F為BC的中點,∴CF=BF=BC=AD,∵DE:AD=1:3,∴DE:CF=2:3,∵AD∥BC,∴△DEG∽△CFG,∴=.故選:B.【點睛】此題主要考查相似三角形的判定與性質,解題的關鍵是熟知平行四邊形的性質及相似三角形的判定與性質.3、A【解析】從正面看所得到的圖形,進行判斷即可.【詳解】解:主視圖就是從正面看到的圖形,因此A圖形符合題意,故選:A.【點睛】此題主要考查三視圖,解題的關鍵是熟知三視圖的定義.4、A【解析】試題分析:∵反比例函數的圖象經過點(2,﹣6),∴,解得k=﹣1.故選A.考點:反比例函數圖象上點的坐標特征.5、B【分析】根據相似三角形面積的比等于相似比的平方即可得出.【詳解】∵兩個相似三角形的相似比是1:2,∴它們的面積比是1:1.故選B.【點睛】本題是一道考查相似三角形性質的基本題目,比較簡單.6、C【解析】試題解析:∵反比例函數圖象過點(3,-4),即k=?12,A.∴此點不在反比例函數的圖象上,故本選項錯誤;B.∴此點不在反比例函數的圖象上,故本選項錯誤;C.∴此點在反比例函數的圖象上,故本選項正確.D.∴此點不在反比例函數的圖象上,故本選項錯誤;故選C.7、D【解析】設直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.8、C【分析】先求-2019的倒數,再求倒數的相反數即可;【詳解】解:﹣2019的倒數是,的相反數為,故答案為:C.【點睛】本題考查倒數和相反數.熟練掌握倒數和相反數的求法是解題的關鍵.9、C【解析】試題解析:∵△ABC為等邊三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵箏形ADOK≌箏形BEPF≌箏形AGQH,∴AD=BE=BF=CG=CH=AK.∵折疊后是一個三棱柱,∴DO=PE=PF=QG=QH=OK,四邊形ODEP、四邊形PFGQ、四邊形QHKO都為矩形.∴∠ADO=∠AKO=90°.連結AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.設OD=x,則AO=2x,由勾股定理就可以求出AD=x,∴DE=6-2x,∴紙盒側面積=3x(6-2x)=-6x2+18x,=-6(x-)2+,∴當x=時,紙盒側面積最大為.故選C.考點:1.二次函數的應用;2.展開圖折疊成幾何體;3.等邊三角形的性質.10、C【解析】分析:由同弧所對的圓周角相等可知∠B=∠ADC=35°;而由圓周角的推論不難得知∠ACB=90°,則由∠CAB=90°-∠B即可求得.詳解:∵∠ADC=35°,∠ADC與∠B所對的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直徑,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故選C.點睛:本題考查了同弧所對的圓周角相等以及直徑所對的圓周角是直角等知識.11、B【分析】由平行可得=,再由條件可求得=,代入可求得BC.【詳解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故選:B.【點睛】本題主要考查平行線分線段成比例的性質,掌握平行線分線段成比例中的對應線段成比例是解題的關鍵.12、D【分析】根據菱形和矩形都是平行四邊形,都具備平行四邊形性質,再結合菱形及矩形的性質,對各選項進行判斷即可.【詳解】解:因為菱形和矩形都是平行四邊形,都具備平行四邊形性質,即對邊平行而且相等,對角相等,對角線互相平分.、對邊平行且相等是菱形矩形都具有的性質,故此選項錯誤;、對角相等是菱形矩形都具有的性質,故此選項錯誤;、對角線互相平分是菱形矩形都具有的性質,故此選項錯誤;、對角線互相垂直是菱形具有而矩形不具有的性質,故此選項正確;故選:D.【點睛】本題考查了平行四邊形、矩形及菱形的性質,屬于基礎知識考查題,同學們需要掌握常見幾種特殊圖形的性質及特點.二、填空題(每題4分,共24分)13、1【分析】要求中位數,按從小到大的順序排列后,找出最中間的一個數(或最中間的兩個數的平均數)即可.【詳解】解:從小到大排列此數據為:0,2,1,4,5,第1位是1,則這組數據的中位數是1.故答案為:1.【點睛】本題考查了中位數的定義,解決本題的關鍵是熟練掌握中位數的概念及中位數的確定方法.14、3(﹣1)【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值()叫做黃金比.【詳解】根據黃金分割點的概念和AC>BC,得:AC=AB=×6=3(﹣1).故答案為:3(﹣1).15、8【分析】在Rt△ABC中,根據坡面AB的坡比以及BC的值,求出AC的值,再通過解直角三角形即可求出斜面AB的長.【詳解】∵Rt△ABC中,BC=6米,迎水坡AB的坡比為1:,∴BC:AC=1:,∴AC=?BC=4(米),∴(米)【點睛】本題考查了解直角三角形的應用----坡度坡角問題,熟練運用勾股定理是解答本題的關鍵.16、【分析】連接BD交OC與E,得出,從而得出;再根據弦與弦長度相同得出,即可得出的度數.【詳解】連接BD交OC與E是的直徑弦與弦長度相同故答案為.【點睛】本題考查了圓周角定理,輔助線得出是解題的關鍵.17、【解析】設出樹高,利用所給角的正切值分別表示出兩次影子的長,然后作差建立方程即可.解:如圖所示,在RtABC中,tan∠ACB=,∴BC=,同理:BD=,∵兩次測量的影長相差8米,∴=8,∴x=4,故答案為4.“點睛”本題考查了平行投影的應用,太陽光線下物體影子的長短不僅與物體有關,而且與時間有關,不同時間隨著光線方向的變化,影子的方向也在變化,解此類題,一定要看清方向.解題關鍵是根據三角函數的幾何意義得出各線段的比例關系,從而得出答案.18、8【分析】根據正六邊形的性質求得∠AOH=30°,得到AH=OA,再根據求出OA即可得到答案.【詳解】如圖,正六邊形ABCDEF,邊心距OH=,∵∠OAB=60°,∠OHA=90°,∴∠AOH=30°,∴AH=OA,∵,∴,解得OA=8,即該正六邊形的半徑為8,故答案為:8.【點睛】此題考查正六邊形的性質,直角三角形30度角的性質,勾股定理,正確理解正六邊形的性質是解題的關鍵.三、解答題(共78分)19、;【分析】根據概率的計算法則得出概率,首先根據題意列出表格,然后求出概率.【詳解】(1)P(恰好是A,a)的概率是=(2)依題意列表如下:共有9種情形,每種發生可能性相等,其中恰好是兩對家庭成員有(AB,ab),(AC,ac),(BC,bc)3種,故恰好是兩對家庭成員的概率是P=考點:概率的計算.20、(2)a=2,2;(2)a=﹣2.【分析】(2)根據關于x的一元二次方程x2-2(a-2)x+a2-a-2=0有兩個不相等的實數根,得到△=[-2(a-2)]2-4(a2-a-2)>0,于是得到結論;
(2)根據x2+x2=2(a-2),x2x2=a2-a-2,代入x22+x22-x2x2=26,解方程即可得到結論.【詳解】解:(2)∵關于x的一元二次方程x2﹣2(a﹣2)x+a2﹣a﹣2=0有兩個不相等實數根,∴△=[﹣2(a﹣2)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a為正整數,∴a=2,2;(2)∵x2+x2=2(a﹣2),x2x2=a2﹣a﹣2,∵x22+x22﹣x2x2=26,∴(x2+x2)2﹣3x2x2=26,∴[2(a﹣2)]2﹣3(a2﹣a﹣2)=26,解得:a2=﹣2,a2=6,∵a<3,∴a=﹣2.【點睛】本題考查的是一元二次方程根與系數的關系及根的判別式,先判斷出a的取值范圍,再由根與系數的關系得出方程是解答此題的關鍵.21、4秒【分析】作AB⊥CF于B,根據方向角、勾股定理求出AB的長,根據題意比較得到消防車的警報聲對聽力測試是否會造成影響;求出造成影響的距離,根據速度計算即可.【詳解】解:作AB⊥CF于B,由題意得:∠ACB=60°,AC=120米,則∠CAB=30°∴米,∴米,∵<110,∴消防車的警報聲對學校會造成影響,造成影響的路程為米,∵秒,∴對學校的影響時間為4秒.【點睛】本題考查的是解直角三角形的應用-方向角問題,正確標注方向角、熟記銳角三角函數的概念是解題的關鍵.22、(1)b=4,c=﹣4;(2)見解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【分析】(1)根據圖象寫出拋物線的頂點式,化成一般式即可求得b、c;(2)利用描點法畫出圖象即可,根據圖象得到C(0,﹣4);(3)根據圖象即可求得.【詳解】解:(1)∵拋物線y=﹣x2+bx+c的對稱軸為直線x=2,且頂點在x軸上,∴頂點為(2,0),∴拋物線為y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)畫出拋物線的簡圖如圖:點C的坐標為(0,﹣4);(3)∵C(0,﹣4),∴點C關于直線x=2對稱點D的坐標為(4,﹣4);若E(m,n)為拋物線上一點,則點E關于直線x=2對稱點的坐標為(4﹣m,n),故答案為(4,﹣4),(4﹣m,n).【點睛】本題主要考查了二次函數的圖像及其對稱性,熟練掌握二次函數的圖像與性質是解題的關鍵.23、(1)雙曲線的解析式為,直線的解析式為y=﹣2x﹣4;(2)﹣3<x<0或x>1.【分析】(1)將A坐標代入反比例解析式中求出m的值,確定出反比例解析式,根據OC=6BC,且B在反比例圖象上,設B坐標為(a,﹣6a),代入反比例解析式中求出a的值,確定出B坐標,將A與B坐標代入一次函數解析式中求出k與b的值,即可確定出一次函數解析式;(2)根據一次函數與反比例函數的兩交點A與B的橫坐標,以及0,將x軸分為四個范圍,找出反比例圖象在一次函數圖象上方時x的范圍即可.【詳解】(1)∵點A(﹣3,2)在雙曲線上,∴,解得m=﹣6,∴雙曲線的解析式為,∵點B在雙曲線上,且OC=6BC,設點B的坐標為(a,﹣6a),∴,解得:a=±1(負值舍去),∴點B的坐標為(1,﹣6),∵直線y=kx+b過點A,B,∴,解得:,∴直線的解析式為y=﹣2x﹣4;(2)根據圖象得:不等式的解集為﹣3<x<0或x>1.24、(1)y=﹣2x+200(30≤x≤60);(2)W=﹣2x2+260x﹣6500;(3)當銷售單價為60元時,該公司日獲利最大為110元.【分析】(1)根據y與x成一次函數解析式,設為y=kx+b,把x與y的兩對值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;(2)根據利潤=單個利潤×銷售量-500列出W關于x的二次函數解析式即可;(3)利用二次函數的性質求出W的最大值,以及此時x的值即可.【詳解】(1)設y=kx+b,∵x=45時,y=10;x=55時,y=1,∴,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)∵售價為x元/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 山東省濱州市三校聯考2025屆高三暑假自主學習測試數學試題含解析
- 公共交通車輛租賃服務合同
- 智慧農業技術創新助力鄉村振興
- 委托合同范本
- 體育館物業管理委托合同范本
- 商業地產買賣合同細則
- 標準茶葉購銷合同模板簡
- 產品設計服務合同范本
- 血液透析中低血壓處理
- 初中數學第一章 整式的乘除單元測試2024-2025學年北師大版數學七年級下冊
- 2025年中考語文課內名著閱讀專題復習:第10部 《水滸傳》課件
- 案例:中建八局綠色施工示范工程綠色施工(76P)
- 水產養殖技術培訓
- 保潔投標書范本
- 2025年中小學生讀書知識競賽題庫及答案
- 第六講當前就業形勢與實施就業優先戰略-2024年形勢與政策
- 社會醫學(含考試)學習通超星期末考試答案章節答案2024年
- 2024-2025大學英語考試六級漢譯英中英對照
- 《中國子宮頸癌篩查指南》解讀課件
- 《安全閥培訓》課件
- 四年級語文下冊 第17課《記金華的雙龍洞》同步訓練題(含答案)(部編版)
評論
0/150
提交評論