




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
本文格式為Word版,下載可任意編輯——高一數學課本的相關主要知識點對于那些典型數學問題,帶有普遍性的問題都務必實時解決,不能把問題的結癥遺留下來,甚至沉淀下來,有價值的問題要實時抓住,遺留問題要有針對性地補,提防實效。以下是我給大家整理的(高一數學)主要學識點,夢想大家能夠熱愛!
目次
高一數學學識點總結
高一數學課本學識點
高一數學主要學識點
高一數學學識點(總結)
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。更加地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α180°。
理解:
(1)留神“兩個方向”:直線向上的方向、x軸的正方向;
(2)規定當直線和x軸平行或重合時,它的傾斜角為0度。
意義:
①直線的傾斜角,表達了直線對x軸正向的傾斜程度;
②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;
③傾斜角一致,未必表示同一條直線。
公式:
k=tanα
k0時α∈(0°,90°)
k0時α∈(90°,180°)
k=0時α=0°
當α=90°時k不存在
ax+by+c=0(a≠0)傾斜角為A,
那么tanA=-a/b,
A=arctan(-a/b)
當a≠0時,
傾斜角為90度,即與X軸垂直
返回目次
高一數學課本學識點
反比例函數
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。
當K0時,反比例函數圖像經過一,三象限,是減函數
當K0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。
學識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
返回目次
高一數學主要學識點
一、集合(jihe)有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素確實定性;
2.元素的互異性;
3.元素的無序性
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,一致的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是對等的,沒有先后依次,因此判定兩個集合是否一樣,僅需對比它們的元素是否一樣,不需測驗排列依次是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的(籃球)隊員},{太平洋,大西洋,印度洋,北冰洋
記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的(方法)。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}
4、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}二、集合間的根本關系1.“包含”關系—子集留神:有兩種可能(1)A是B的一片面,;(2)A與B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA2.“相等”關系(5≥5,且5≤5,那么5=5)實例:設A={x|x2-1=0}B={-1,1}“元素一致”
結論:對于兩個集合A與B,假設集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
①任何一個集合是它本身的子集。A?A
②真子集:假設A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③假設A?B,B?C,那么A?C
④假設A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由全體屬于A且屬于B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定義:一般地,由全體屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中全體不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:假設集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,假設按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域.
留神:○2假設只給出解析式y=f(x),而沒有指明它的定義域,那么函數的定義域即是指能使這個式子有意義的實數的集合;○3函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零;(2)偶次方根的被開方數不小于零;(3)對數式的真數務必大于零;(4)指數、對數式的底務必大于零且不等于1.(5)假設函數是由一些根本函數通過四那么運算結合而成的.那么,它的定義域是使各片面都有意義的x的值組成的集合.(6)指數為零底不成以等于零(6)實際問題中的函數的定義域還要保表明際問題有意義.
(又留神:求出不等式組的解集即為函數的定義域。)
2.構成函數的三要素:定義域、對應關系和值域
再留神:
(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年項目管理中的法律法規考題試題及答案
- 項目管理戰略分析試題及答案
- 2025年公司財務治理新趨勢試題及答案
- 微生物檢測新技術的探索試題及答案
- 2024年項目管理考題預測試題及答案
- 證券從業資格證考試制度理解試題及答案
- 重要致病菌的特征識別試題及答案
- 放射性金屬礦的開采對土壤質量的影響考核試卷
- 生態環境監測在農業生態環境保護中的重要性考核試卷
- 新冠疫情下微生物檢測的策略與實施試題及答案
- 眼視光器械學-第五章-眼底檢測儀器課件
- 有毒動植物食物中毒及其預防-河豚魚中毒(食品安全課件)
- 某裝飾裝修工程施工應急處置預案
- 第四章-數據交換技術課件
- 塞外山城張家口
- 日光溫室大棚承包合同
- 電子商務案例分析13例 - 電子商務案例
- 多發傷及復合傷的搶救處理流程
- 2023年鄭州科技學院單招面試題庫及答案解析
- 《表觀遺傳》教學設計
- 自動跟隨智能小車的定位與跟隨系統設計
評論
0/150
提交評論