




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),則函數(shù)()A. B.C. D.2.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當(dāng)變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,可以得到的近似值為()A. B.C. D.3.已知,,三點,點使直線,且,則點D的坐標(biāo)是(
)A. B.C. D.4.已知全集,集合,則()A. B.C. D.5.將函數(shù)的圖象沿軸向左平移個單位后,得到一個偶函數(shù)的圖象,則的一個可能取值為A. B.C. D.6.已知函數(shù)是定義在上的奇函數(shù),,且,則()A. B.C. D.7.若函數(shù)和.分別由下表給出:011012301則不等式的解集為()A. B.C. D.8.設(shè)奇函數(shù)在上為增函數(shù),且,則不等式的解集為A. B.C. D.9.已知奇函數(shù)在上單調(diào)遞減,且,則不等式的解集為()A. B.C. D.10.設(shè),則a,b,c大小關(guān)系為()A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.已知直線,則與間的距離為___________.12.已知函數(shù)且(1)若函數(shù)在區(qū)間上恒有意義,求實數(shù)的取值范圍;(2)是否存在實數(shù),使得函數(shù)在區(qū)間上為增函數(shù),且最大值為?若存在,求出的值;若不存在,請說明理由13.命題“,”的否定形式為__________________________.14.空間兩點與的距離是___________.15.某班有39名同學(xué)參加數(shù)學(xué)、物理、化學(xué)課外研究小組,每名同學(xué)至多參加兩個小組.已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時參加數(shù)學(xué)和物理小組的有6人,同時參加物理和化學(xué)小組的有4人,則同時參見數(shù)學(xué)和化學(xué)小組有多少人__________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.如圖,有一塊半徑為4的半圓形鋼板,計劃裁剪成等腰梯形ABCD的形狀,它的下底AB是圓O的直徑,上底CD的端點在圓周上,連接OC兩點,OC與OB所形成的夾角為.(1)寫出這個梯形周長y和的函數(shù)解析式,并寫出它的定義域;(2)求周長y的最大值以及此時梯形的面積.17.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,平面PCD⊥底面ABCD,且BC=2,,(1)證明:(2)若,求四棱錐的體積18.已知函數(shù),其圖像過點,相鄰兩條對稱軸之間的距離為(1)求函數(shù)的解析式;(2)將函數(shù)的圖像上每一點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)保持不變,得到函數(shù)的圖像,若方程在上有兩個不相等的實數(shù)解,求實數(shù)m的取值范圍19.已知.(1)求的值;(2)求的值.20.如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是的中點(1)求證:(2)若,求證:平面平面21.在密閉培養(yǎng)環(huán)境中,某類細(xì)菌的繁殖在初期會較快,隨著單位體積內(nèi)細(xì)菌數(shù)量的增加,繁殖速度又會減慢.在一次實驗中,檢測到這類細(xì)菌在培養(yǎng)皿中的數(shù)量(單位:百萬個)與培養(yǎng)時間(單位:小時)的關(guān)系為:根據(jù)表格中的數(shù)據(jù)畫出散點圖如下:為了描述從第小時開始細(xì)菌數(shù)量隨時間變化的關(guān)系,現(xiàn)有以下三種模型供選擇:①,②,③(1)選出你認(rèn)為最符合實際的函數(shù)模型,并說明理由;(2)利用和這兩組數(shù)據(jù)求出你選擇的函數(shù)模型的解析式,并預(yù)測從第小時開始,至少再經(jīng)過多少個小時,細(xì)菌數(shù)量達(dá)到百萬個
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】根據(jù)分段函數(shù)的定義域先求出,再根據(jù),根據(jù)定義域,結(jié)合,即可求出結(jié)果.【詳解】由題意可知,,所以.故選:C.2、B【解析】將一個圓的內(nèi)接正邊形等分成個等腰三角形;根據(jù)題意,可知個等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【詳解】將一個圓的內(nèi)接正邊形等分成個等腰三角形,設(shè)圓的半徑為,則,即,所以.故選:B.3、D【解析】先設(shè)點D的坐標(biāo),由題中條件,且,建立D點橫縱坐標(biāo)的方程,解方程即可求出結(jié)果.【詳解】設(shè)點,則由題意可得:,解得,所以D點坐標(biāo)為.【點睛】本題主要考查平面向量,屬于基礎(chǔ)題型.4、A【解析】首先進(jìn)行并集運算,然后進(jìn)行補(bǔ)集運算即可.【詳解】由題意可得:,則.故選:A.5、B【解析】得到的偶函數(shù)解析式為,顯然【考點定位】本題考查三角函數(shù)的圖象和性質(zhì),要注意三角函數(shù)兩種變換的區(qū)別,選擇合適的值通過誘導(dǎo)公式把轉(zhuǎn)化為余弦函數(shù)是考查的最終目的.6、C【解析】由得函數(shù)的周期性,由周期性變形自變量的值,最后由奇函數(shù)性質(zhì)求得值【詳解】∵是奇函數(shù),∴,又,∴是周期函數(shù),周期為4∴故選:C7、C【解析】根據(jù)題中的條件進(jìn)行驗證即可.【詳解】當(dāng)時,有成立,故是不等式的解;當(dāng)時,有不成立,故不是不等式的解;當(dāng)時,有成立,故是不等式的解.綜上:可知不等式的解集為.故選:C8、D【解析】由f(x)為奇函數(shù)可知,=<0.而f(1)=0,則f(-1)=-f(1)=0.當(dāng)x>0時,f(x)<0=f(1);當(dāng)x<0時,f(x)>0=f(-1)又∵f(x)在(0,+∞)上為增函數(shù),∴奇函數(shù)f(x)在(-∞,0)上為增函數(shù)所以0<x<1,或-1<x<0.選D點睛:解函數(shù)不等式:首先根據(jù)函數(shù)的性質(zhì)把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi)9、A【解析】由題意可得在單調(diào)遞減,且,從而可得當(dāng)或時,,當(dāng)或時,,然后分和求出不等式的解集【詳解】因為奇函數(shù)在上單調(diào)遞減,且,所以在單調(diào)遞減,且,所以當(dāng)或時,,當(dāng)或時,,當(dāng)時,不等式等價于,所以或,解得,當(dāng)時,不等式等價于,所以或,解得或,綜上,不等式的解集為,故選:A10、C【解析】利用有理指數(shù)冪和冪函數(shù)的單調(diào)性分別求得,,的范圍即可得答案【詳解】,,,又在上單調(diào)遞增,,,故選:C二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、【解析】根據(jù)平行線間距離直接計算.【詳解】由已知可得兩直線互相平行,故,故答案為:.12、(1)(2)存在;(或)【解析】(1)由題意,得在上恒成立,參變分離得恒成立,再令新函數(shù),判斷函數(shù)的單調(diào)性,求解最大值,從而求出的取值范圍;(2)在(1)的條件下,討論與兩種情況,利用復(fù)合函數(shù)同增異減的性質(zhì)求解對應(yīng)的取值范圍,再利用最大值求解參數(shù),并判斷是否能取到.【小問1詳解】由題意,在上恒成立,即在恒成立,令,則在上恒成立,令所以函數(shù)在在上單調(diào)遞減,故則,即的取值范圍為.【小問2詳解】要使函數(shù)在區(qū)間上為增函數(shù),首先在區(qū)間上恒有意義,于是由(1)可得,①當(dāng)時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為增函數(shù),故且,即,此時的最大值為即,滿足題意②當(dāng)時,要使函數(shù)在區(qū)間上為增函數(shù),則函數(shù)在上恒正且為減函數(shù),故且,即,此時的最大值為即,滿足題意綜上,存在(或)【點睛】一般關(guān)于不等式在給定區(qū)間上恒成立的問題都可轉(zhuǎn)化為最值問題,參變分離后得恒成立,等價于;恒成立,等價于成立.13、##【解析】根據(jù)全稱量詞命題的否定直接得出結(jié)果.【詳解】命題“”的否定為:,故答案為:14、【解析】根據(jù)兩點間的距離求得正確答案.【詳解】.故答案為:15、【解析】設(shè)參加數(shù)學(xué)、物理、化學(xué)小組的同學(xué)組成的集合分別為,、,根據(jù)容斥原理可求出結(jié)果.【詳解】設(shè)參加數(shù)學(xué)、物理、化學(xué)小組的同學(xué)組成的集合分別為,、,同時參加數(shù)學(xué)和化學(xué)小組的人數(shù)為,因為每名同學(xué)至多參加兩個小組,所以同時參加三個小組的同學(xué)的人數(shù)為,如圖所示:由圖可知:,解得,所以同時參加數(shù)學(xué)和化學(xué)小組有人.故答案為:.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1),(2)20,【解析】(1)過點C作,表示出,,即可寫出梯形周長y和的函數(shù)解析式;(2)令,結(jié)合二次函數(shù)求出y的最大值,求出此時的,再計算梯形面積即可.【小問1詳解】由題意得.半圓形鋼板半徑為4,則,過點C作.在和中,有,,.在中,因為,為等腰三角形,故,所以,.,.【小問2詳解】由.令,則,則.則當(dāng)時,周長y有最大值,最大值20,此時,.故梯形的高,,.17、(1)證明見解析;(2)8.【解析】(1)由平行四邊形的性質(zhì)及勾股定理可得,再由面面垂直的性質(zhì)有BC⊥面PCD,根據(jù)線面垂直的性質(zhì)即可證結(jié)論.(2)取CD的中點E,連接PE,易得,由面面垂直的性質(zhì)有PE⊥底面ABCD,即PE是四棱錐的高,應(yīng)用棱錐的體積公式求體積即可.【小問1詳解】在平行四邊形ABCD中因為,即,所以因為面PCD⊥面ABCD,且面PCD面ABCD=CD,面PCD,所以BC⊥面PCD,又PD平面PCD,所以【小問2詳解】如圖,取CD的中點E,連接PE,因為,所以,又面PCD⊥面ABCD,面PCD面ABCD=CD,面PCD,所以PE⊥底面ABCD因為,,則,故18、(1);(2).【解析】(1)根據(jù)給定條件依次計算出,即可作答.(2)由(1)求出函數(shù)的解析式,再探討在上的性質(zhì),結(jié)合圖象即可作答.【小問1詳解】因圖像的相鄰兩條對稱軸之間的距離為,則周期,解得,又,即,而,即,則,即,所以函數(shù)的解析式.【小問2詳解】依題意,,當(dāng)時,,而函數(shù)在上遞增,在上遞減,由得,由得,因此,函數(shù)在上單調(diào)遞增,函數(shù)值從增到2,在上單調(diào)遞減,函數(shù)值從2減到1,又是圖象的一條對稱軸,直線與函數(shù)在上的圖象有兩個公共點,當(dāng)且僅當(dāng),如圖,于是得方程在上有兩個不相等的實數(shù)解時,當(dāng)且僅當(dāng),所以實數(shù)m的取值范圍.19、(1);(2)【解析】(1)根據(jù)正切的差角公式求得,再利用正切的二倍角公式可求得答案;(2)根據(jù)同角三角函數(shù)的關(guān)系和正弦,余弦的二倍角公式,代入可得答案【詳解】(1)因為,所以,即,解得,所以,所以,(2)20、(1)見解析;(2)見解析【解析】分析:(1)可根據(jù)為等腰三角形得到,再根據(jù)平面平面可以得到平面,故.(2)因及是中點,從而有,再根據(jù)平面得到,從而平面,故平面平面.詳解:(1)證明:因為,點是棱的中點,所以,平面.因為平面平面,平面平面,平面,所以平面,又因為平面,所以.(2)證明:因為,點是的中點,所以.由(1)可得,又因為,所以平面,又因為平面,所以平面平面點睛:線線垂直的證明,可歸結(jié)為線面垂直,也可以轉(zhuǎn)化到平面中的某兩條直線的垂直問題,而面面垂直的證明,可轉(zhuǎn)化為線面垂直問題,也轉(zhuǎn)化為證明二面角為直二面角.21、(1),理由見解析;(2),至少再經(jīng)過小時,細(xì)菌數(shù)量達(dá)到百萬個【解析】(1)分析可知,所選函數(shù)必須滿足三個條件:(ⅰ)定義域包含;(ⅱ)增函數(shù);(ⅲ)隨著自
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級下冊期試卷及答案
- 物流中心建設(shè)造價咨詢協(xié)議
- 《過渡金屬、主族金屬》課件
- 神經(jīng)元損傷修復(fù)技術(shù)的實驗方法
- 醫(yī)學(xué)歷史文化探究
- 師范生實習(xí)總結(jié)模版
- 《溫敏傳感器》課件
- 區(qū)塊鏈賦能為文化遺產(chǎn)筑起數(shù)字堡壘
- 健康城市建設(shè)的投入與產(chǎn)出分析
- 從管理到服務(wù)數(shù)字化醫(yī)療記錄系統(tǒng)的創(chuàng)新應(yīng)用
- 2025屆上海市華東師范大學(xué)二附中高三(最后沖刺)歷史試卷含解析
- 霧化吸入療法合理用藥專家共識(2024版)解讀 2
- 單位食堂勞務(wù)外包服務(wù)投標(biāo)方案(技術(shù)方案)
- 2025風(fēng)電機(jī)組無人機(jī)巡檢技術(shù)方案
- 中醫(yī)適宜技術(shù)-中藥熱奄包
- 2022年SYB創(chuàng)業(yè)培訓(xùn)講師考試
- 鋼管樁沉樁兩種工藝方法
- 泌尿系結(jié)石醫(yī)學(xué)PPT課件
- 標(biāo)準(zhǔn)化與標(biāo)準(zhǔn)編寫PPT課件
- 靜電防護(hù)ESD培訓(xùn)教材(完整版)
- 境外匯款申請書和售匯申請書打印格式
評論
0/150
提交評論