




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
靜電場中的導體習題、例題分析+靜電場中的導體習題、例題分析+4.2一導體球半徑為R1,其外同心地罩以內、外半徑分別為R2和R3的厚導體殼,此系統帶電后內球電勢,外球所帶總電量為Q.求此系統各處的電勢和電場分布.解:設導體球所帶電量為q,則由高斯定理易知外球殼的內表面所帶電量為-q,又由電荷守恒定律可得外球殼的外表面所帶電量為Q+q.q-qQ+q由電勢疊加原理可得內球電勢為由此解得24.2一導體球半徑為R1,其外同心地罩以內、外半徑分別為Rq-qQ+q分別由電勢疊加原理和電場疊加原理可得此系統各處的電勢和電場分布:3q-qQ+q分別由電勢疊加原理和電場疊加原理可得此系設導體球上的感應電量為Q由導體是個等勢體知:o點的電勢也為0由電勢疊加原理有關系式:解:因為導體球接地,故其電勢為零,即4.4一個接地的導體球,半徑為R,原來不帶電.今將一點電荷q放在球外距球心的距離為r的地方,求球上的感生電荷總量.由此解得4設導體球上的感應電量為Q解:因為導體球接地,故其電勢為零,即4.3在半徑為R1=6.0cm的金屬球A外面套有一個同心的金屬球殼B.已知球殼B的內、外半徑分別為R2=
=8.0cm,R3=10.cm.設A球帶有總電量QA=3×10-8C,球殼B帶有總電量QB=2×10-8C.(1)求球殼B內、外表面上各帶有的電量以及球A和球B的電勢;(2)將球殼B接地然后斷開,再把金屬球A接地.求金屬球A和球殼B內、外表面上各帶有的電量以及球A和球B的電勢.解:(1)由高斯定理易得球殼B內表面上帶有的電量為又由電荷守恒定律得球殼B外表面上帶有的電量為54.3在半徑為R1=6.0cm的金屬球A外面套有一個同心的由電勢疊加原理得球A的電勢為再由電勢疊加原理得球殼B的電勢為6由電勢疊加原理得球A的電勢為再由電勢疊加原理得球殼B的電勢為(2)當球殼B接地時,A球所帶電荷的電量不變,分布也不變.又因球殼B接地,所以其電勢為零.于是由電勢疊加原理有由以上兩式可解得此時球殼B所帶總電量為由高斯定理可得球殼B內表面上帶有的電量為7(2)當球殼B接地時,A球所帶電荷的電量不變,分布也不變.當接地線斷開然后把金屬球A接地,金屬球A的電勢由原來大于0變為0,故它會與地交換電荷,其電量將發生改變,但不一定變為0;球殼B所帶總電量不變.進一步分析知球殼B所帶總電量為負,它在球A上產生的電勢必為負,為使金屬球A的電勢變為0,金屬球A所帶電量必為正.雖然球殼B所帶總電量不變,但由于球A帶電且電量發生改變,通過靜電感應,使得球殼B的電荷重新分布,其外表面的電量不再為零.由電勢疊加原理得球A的電勢為8當接地線斷開然后把金屬球A接地,金屬球A的電勢由原來對球殼B,由高斯定理得又由電荷守恒定律得球殼B外表面上帶有的電量為由以上三個方程可解得9對球殼B,由高斯定理得又由電荷守恒定律得球殼B外表面上帶有的因金屬A接地,所以其電勢為由電勢疊加原理得球殼B的電勢為10因金屬A接地,所以其電勢為由電勢疊加原理得球殼B的電勢為10證明:如圖所示,在導體表面取一小面積ΔS,設其上的面電荷密度為σ,這些電荷在ΔS近鄰處(即非常接近這ΔS處)的P1和P2點產生的電場可看成是無限大均勻帶電平面產生的電場.P1P2導體外導體內設ΔS上的電荷在P1和P2點產生的電場分別為和,則有4.1求導體外表面近鄰處場強的另一方法.設導體表面上某處面電荷密度為σ,在此處取一小面積ΔS,將ΔS面兩側的電場看成是ΔS上的電荷的電場(用無限大平面算)和導體上其它地方以及導體外的電荷的電場(這電場在ΔS附近可以認為是均勻的)的疊加,并利用導體內合電場為零求出導體表面近鄰處的場強為(即(4.2)式).導體11證明:如圖所示,在導體表面取一小面積ΔS,設其上的面電荷密度P1P2導體外導體內又設導體上其它地方以及導體外的電荷在P1和P2點處產生的場強分別為和由于P1和P2點非常靠近,因此可認為由于導體內的場強為零,所以有故因為和方向相同,所以導體外鄰近一點P1處的場強大小為12P1P2導體外導體內又設導體上其它地方以及導體外的4.7試證靜電平衡條件下導體表面單位面積受的力為其中σ為面電荷密度,為表面的外法線方向的單位矢量.此力方向與電荷的符號無關,總指向導體外部.證明:在4.1題中曾經證明了靜電平衡條件下導體上除ΔS外其它地方以及導體外的電荷在P1和P2點的電場為P1P2導體外導體內顯然這些電荷在導體上P3點處產生的場強為P3134.7試證靜電平衡條件下導體表面單位面積受的力為其中σ為面又由于對于P3點來說ΔS面可看成是無限大平面,所以由對稱性可知ΔS面上的電荷在P3處產生的場強E13為零.P1P2導體外導體內P3因此,ΔS面上P3處的場強為于是ΔS面上單位面積受的力為顯然,此力方向與電荷的符號無關,總指向導體外部.14又由于對于P3點來說ΔS面可看成是無限大平面,所以由解:設每塊板的兩個表面的面電荷密度如圖所示.又設向下方向為電場強度正方向,則由三塊板內的電場強度為零可得對A板有:4.5如圖所示,有三塊互相平行的導體板,外面的兩塊用導線連接,原來不帶電.中間一塊所帶總電荷密度為1.3×10-5C/m2.求每塊板的兩個表面的面電荷密度各是多少?(忽略邊緣效應)5.0cm8.0cmABC即對B板有:對C板有:15解:設每塊板的兩個表面的面電荷密度如圖所示.又設向5.0cm8.0cmABC由電荷守恒定律可得對A、C板:對B板:由于A、C板用導線相連,故它們電勢相等,所以有即也就是165.0cm8.0cmABC由電荷守恒定律可得對A、C板:對B由以上6個方程并代入有關數據可解得:5.0cm8.0cmABC17由以上6個方程并代入有關數據可解得:5.0cm8.0cmAB1818靜電場中的導體習題、例題分析+靜電場中的導體習題、例題分析+4.2一導體球半徑為R1,其外同心地罩以內、外半徑分別為R2和R3的厚導體殼,此系統帶電后內球電勢,外球所帶總電量為Q.求此系統各處的電勢和電場分布.解:設導體球所帶電量為q,則由高斯定理易知外球殼的內表面所帶電量為-q,又由電荷守恒定律可得外球殼的外表面所帶電量為Q+q.q-qQ+q由電勢疊加原理可得內球電勢為由此解得204.2一導體球半徑為R1,其外同心地罩以內、外半徑分別為Rq-qQ+q分別由電勢疊加原理和電場疊加原理可得此系統各處的電勢和電場分布:21q-qQ+q分別由電勢疊加原理和電場疊加原理可得此系設導體球上的感應電量為Q由導體是個等勢體知:o點的電勢也為0由電勢疊加原理有關系式:解:因為導體球接地,故其電勢為零,即4.4一個接地的導體球,半徑為R,原來不帶電.今將一點電荷q放在球外距球心的距離為r的地方,求球上的感生電荷總量.由此解得22設導體球上的感應電量為Q解:因為導體球接地,故其電勢為零,即4.3在半徑為R1=6.0cm的金屬球A外面套有一個同心的金屬球殼B.已知球殼B的內、外半徑分別為R2=
=8.0cm,R3=10.cm.設A球帶有總電量QA=3×10-8C,球殼B帶有總電量QB=2×10-8C.(1)求球殼B內、外表面上各帶有的電量以及球A和球B的電勢;(2)將球殼B接地然后斷開,再把金屬球A接地.求金屬球A和球殼B內、外表面上各帶有的電量以及球A和球B的電勢.解:(1)由高斯定理易得球殼B內表面上帶有的電量為又由電荷守恒定律得球殼B外表面上帶有的電量為234.3在半徑為R1=6.0cm的金屬球A外面套有一個同心的由電勢疊加原理得球A的電勢為再由電勢疊加原理得球殼B的電勢為24由電勢疊加原理得球A的電勢為再由電勢疊加原理得球殼B的電勢為(2)當球殼B接地時,A球所帶電荷的電量不變,分布也不變.又因球殼B接地,所以其電勢為零.于是由電勢疊加原理有由以上兩式可解得此時球殼B所帶總電量為由高斯定理可得球殼B內表面上帶有的電量為25(2)當球殼B接地時,A球所帶電荷的電量不變,分布也不變.當接地線斷開然后把金屬球A接地,金屬球A的電勢由原來大于0變為0,故它會與地交換電荷,其電量將發生改變,但不一定變為0;球殼B所帶總電量不變.進一步分析知球殼B所帶總電量為負,它在球A上產生的電勢必為負,為使金屬球A的電勢變為0,金屬球A所帶電量必為正.雖然球殼B所帶總電量不變,但由于球A帶電且電量發生改變,通過靜電感應,使得球殼B的電荷重新分布,其外表面的電量不再為零.由電勢疊加原理得球A的電勢為26當接地線斷開然后把金屬球A接地,金屬球A的電勢由原來對球殼B,由高斯定理得又由電荷守恒定律得球殼B外表面上帶有的電量為由以上三個方程可解得27對球殼B,由高斯定理得又由電荷守恒定律得球殼B外表面上帶有的因金屬A接地,所以其電勢為由電勢疊加原理得球殼B的電勢為28因金屬A接地,所以其電勢為由電勢疊加原理得球殼B的電勢為10證明:如圖所示,在導體表面取一小面積ΔS,設其上的面電荷密度為σ,這些電荷在ΔS近鄰處(即非常接近這ΔS處)的P1和P2點產生的電場可看成是無限大均勻帶電平面產生的電場.P1P2導體外導體內設ΔS上的電荷在P1和P2點產生的電場分別為和,則有4.1求導體外表面近鄰處場強的另一方法.設導體表面上某處面電荷密度為σ,在此處取一小面積ΔS,將ΔS面兩側的電場看成是ΔS上的電荷的電場(用無限大平面算)和導體上其它地方以及導體外的電荷的電場(這電場在ΔS附近可以認為是均勻的)的疊加,并利用導體內合電場為零求出導體表面近鄰處的場強為(即(4.2)式).導體29證明:如圖所示,在導體表面取一小面積ΔS,設其上的面電荷密度P1P2導體外導體內又設導體上其它地方以及導體外的電荷在P1和P2點處產生的場強分別為和由于P1和P2點非常靠近,因此可認為由于導體內的場強為零,所以有故因為和方向相同,所以導體外鄰近一點P1處的場強大小為30P1P2導體外導體內又設導體上其它地方以及導體外的4.7試證靜電平衡條件下導體表面單位面積受的力為其中σ為面電荷密度,為表面的外法線方向的單位矢量.此力方向與電荷的符號無關,總指向導體外部.證明:在4.1題中曾經證明了靜電平衡條件下導體上除ΔS外其它地方以及導體外的電荷在P1和P2點的電場為P1P2導體外導體內顯然這些電荷在導體上P3點處產生的場強為P3314.7試證靜電平衡條件下導體表面單位面積受的力為其中σ為面又由于對于P3點來說ΔS面可看成是無限大平面,所以由對稱性可知ΔS面上的電荷在P3處產生的場強E13為零.P1P2導體外導體內P3因此,ΔS面上P3處的場強為于是ΔS面上單位面積受的力為顯然,此力方向與電荷的符號無關,總指向導體外部.32又由于對于P3點來說ΔS面可看成是無限大平面,所以由解:設每塊板的兩個表面的面電荷密度如圖所示.又設向下方向為電場強度正方向,則由三塊板內的電場強度為零可得對A板有:4.5如圖所示,有三塊互相平行的導體板,外面的兩塊用導線連接,原來不帶電.中間一塊所帶總電荷密度為1.3×10-5C/m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 游樂設備材料選用與應用考核試卷
- 管道工程公共服務優化與發展動態分析考核試卷
- 礦物增強塑料批發考核試卷
- 信托業務與體育產業發展考核試卷
- 地理信息系統在地質勘探與資源評價中的應用考核試卷
- 稀土金屬壓延加工的產業升級路徑探索考核試卷
- 電視設備智能安防技術考核試卷
- 遼寧科技大學《藥學細胞生物學實驗》2023-2024學年第二學期期末試卷
- 寧波大學《藝術管理學(一)》2023-2024學年第二學期期末試卷
- 濰坊護理職業學院《集成電路測試實驗》2023-2024學年第二學期期末試卷
- 自身免疫性腦炎講課
- 2024-2029全球及中國X射線衍射儀(XRD)行業市場發展分析及前景趨勢與投資發展研究報告
- 發展漢語初級口語21課課件
- 醫院檢驗科實驗室生物安全程序文件SOP
- MOOC 運動與健康-湖北大學 中國大學慕課答案
- 酸棗仁湯的成分分析研究
- 泡泡瑪特市場分析
- 大單元教學設計 統編版三年級下冊道德與法治 第一單元備課教案
- MySQL運維監控與故障診斷
- 教你成為歌唱達人智慧樹知到期末考試答案2024年
- JTG D70-2-2014 公路隧道設計規范 第二冊 交通工程與附屬設施
評論
0/150
提交評論