2023學年上海市閔行區七寶中學高考仿真卷數學試題(含答案解析)_第1頁
2023學年上海市閔行區七寶中學高考仿真卷數學試題(含答案解析)_第2頁
2023學年上海市閔行區七寶中學高考仿真卷數學試題(含答案解析)_第3頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.2.設集合,,若,則()A. B. C. D.3.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.4.黨的十九大報告明確提出:在共享經濟等領域培育增長點、形成新動能.共享經濟是公眾將閑置資源通過社會化平臺與他人共享,進而獲得收入的經濟現象.為考察共享經濟對企業經濟活躍度的影響,在四個不同的企業各取兩個部門進行共享經濟對比試驗,根據四個企業得到的試驗數據畫出如下四個等高條形圖,最能體現共享經濟對該部門的發展有顯著效果的圖形是()A. B.C. D.5.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.26.某幾何體的三視圖如圖所示,若側視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.7.設集合,,則集合A. B. C. D.8.已知,則下列不等式正確的是()A. B.C. D.9.已知圓關于雙曲線的一條漸近線對稱,則雙曲線的離心率為()A. B. C. D.10.函數的大致圖象為()A. B.C. D.11.“”是“函數的圖象關于直線對稱”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.設為數列的前項和,若,,且,,則________.14.已知函數,則關于的不等式的解集為_______.15.二項式的展開式中所有項的二項式系數之和是64,則展開式中的常數項為______.16.內角,,的對邊分別為,,,若,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的右焦點為,離心率為.(1)若,求橢圓的方程;(2)設直線與橢圓相交于、兩點,、分別為線段、的中點,若坐標原點在以為直徑的圓上,且,求的取值范圍.18.(12分)已知直線是曲線的切線.(1)求函數的解析式,(2)若,證明:對于任意,有且僅有一個零點.19.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大小.20.(12分)設橢圓E:(a,b>0)過M(2,),N(,1)兩點,O為坐標原點,(1)求橢圓E的方程;(2)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且?若存在,寫出該圓的方程,若不存在說明理由.21.(12分)橢圓的右焦點,過點且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點且斜率不為0的直線與橢圓交于,兩點.為坐標原點,為橢圓的右頂點,求四邊形面積的最大值.22.(10分)已知函數,函數在點處的切線斜率為0.(1)試用含有的式子表示,并討論的單調性;(2)對于函數圖象上的不同兩點,,如果在函數圖象上存在點,使得在點處的切線,則稱存在“跟隨切線”.特別地,當時,又稱存在“中值跟隨切線”.試問:函數上是否存在兩點使得它存在“中值跟隨切線”,若存在,求出的坐標,若不存在,說明理由.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】

由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【答案點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.2.A【答案解析】

根據交集的結果可得是集合的元素,代入方程后可求的值,從而可求.【題目詳解】依題意可知是集合的元素,即,解得,由,解得.【答案點睛】本題考查集合的交,注意根據交集的結果確定集合中含有的元素,本題屬于基礎題.3.D【答案解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【題目詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【答案點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.4.D【答案解析】根據四個列聯表中的等高條形圖可知,圖中D中共享與不共享的企業經濟活躍度的差異最大,它最能體現共享經濟對該部門的發展有顯著效果,故選D.5.A【答案解析】

設,用表示出,求出的值即可得出答案.【題目詳解】設由,,.故選:A【答案點睛】本題考查了向量加法、減法以及數乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.6.C【答案解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.7.B【答案解析】

先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【題目詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【答案點睛】本小題主要考查一元二次不等式的解法,考查對數不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數化為正數,且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.8.D【答案解析】

利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【題目詳解】已知,賦值法討論的情況:(1)當時,令,,則,,排除B、C選項;(2)當時,令,,則,排除A選項.故選:D.【答案點睛】比較大小通常采用作差法,本題主要考查不等式與不等關系,不等式的基本性質,利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.9.C【答案解析】

將圓,化為標準方程為,求得圓心為.根據圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,.再根據求解.【題目詳解】已知圓,所以其標準方程為:,所以圓心為.因為雙曲線,所以其漸近線方程為,又因為圓關于雙曲線的一條漸近線對稱,則圓心在漸近線上,所以.所以.故選:C【答案點睛】本題主要考查圓的方程及對稱性,還有雙曲線的幾何性質,還考查了運算求解的能力,屬于中檔題.10.A【答案解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【題目詳解】,排除掉C,D;,,,.故選:A.【答案點睛】本題考查了由函數解析式判斷函數的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.11.A【答案解析】

先求解函數的圖象關于直線對稱的等價條件,得到,分析即得解.【題目詳解】若函數的圖象關于直線對稱,則,解得,故“”是“函數的圖象關于直線對稱”的充分不必要條件.故選:A【答案點睛】本題考查了充分不必要條件的判斷,考查了學生邏輯推理,概念理解,數學運算的能力,屬于基礎題.12.C【答案解析】

①根據線性相關性與r的關系進行判斷,

②根據相關指數的值的性質進行判斷,

③根據方差關系進行判斷,

④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【題目詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;

②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;

③若統計數據的方差為1,則的方差為,故③正確;

④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;

所以正確的命題有①③.

故選:C.【答案點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數列是以為首項,為公差的等差數列,所以.14.【答案解析】

判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【題目詳解】令,易知函數為奇函數,在R上單調遞增,,即,∴∴,即x>故答案為:【答案點睛】本題考查函數的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.15.【答案解析】

由二項式系數性質求出,由二項展開式通項公式得出常數項的項數,從而得常數項.【題目詳解】由題意,.展開式通項為,由得,∴常數項為.故答案為:.【答案點睛】本題考查二項式定理,考查二項式系數的性質,掌握二項展開式通項公式是解題關鍵.16.【答案解析】∵,∴,即,∴,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【答案解析】

(1)由橢圓的離心率求出、的值,由此可求得橢圓的方程;(2)設點、,聯立直線與橢圓的方程,列出韋達定理,由題意得出,可得出,【題目詳解】(1)由題意得,,.又因為,,所以橢圓的方程為;(2)由,得.設、,所以,,依題意,,易知,四邊形為平行四邊形,所以.因為,,所以.即,將其整理為.因為,所以,.所以,即.【答案點睛】本題考查橢圓方程的求法和直線與橢圓位置關系的綜合運用,解題時要認真審題,注意挖掘題設中的隱含條件,合理地進行等價轉化,考查計算能力,屬于中等題.18.(1)(2)證明見解析【答案解析】

(1)對函數求導,并設切點,利用點既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當x充分小時,當x充分大時,可得至少有一個零點.再證明零點的唯一性,即對函數求導得,對分和兩種情況討論,即可得答案.【題目詳解】(1)根據題意,,設直線與曲線相切于點.根據題意,可得,解之得,所以.(2)由(1)可知,則當x充分小時,當x充分大時,∴至少有一個零點.∵,①若,則,在上單調遞增,∴有唯一零點.②若令,得有兩個極值點,∵,∴,∴.∴在上單調遞增,在上單調遞減,在上單調遞增.∴極大值為.,又,∴在(0,16)上單調遞增,∴,∴有唯一零點.綜上可知,對于任意,有且僅有一個零點.【答案點睛】本題考查導數的幾何意義的運用、利用導數證明函數的零點個數,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力和運算求解能力,求解時注意零點存在定理的運用.19.(1)證明見解析;(2)60°.【答案解析】試題分析:(1)連結PD,由題意可得,則AB⊥平面PDE,;(2)法一:結合幾何關系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標系,計算可得平面PBE的法向量.平面PAB的法向量為.據此計算可得二面角的大小為.試題解析:(1)連結PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點建立空間直角坐標系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設二面角的大小為,由圖知,,所以即二面角的大小為.20.(1)(2)【答案解析】試題分析:(1)因為橢圓E:(a,b>0)過M(2,),N(,1)兩點,所以解得所以橢圓E的方程為(2)假設存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且,設該圓的切線方程為解方程組得,即,則△=,即,要使,需使,即,所以,所以又,所以,所以,即或,因為直線為圓心在原點的圓的一條切線,所以圓的半徑為,,,所求的圓為,此時圓的切線都滿足或,而當切線的斜率不存在時切線為與橢圓的兩個交點為或滿足,綜上,存在圓心在原點的圓,使得該圓的任意一條切線與橢圓E恒有兩個交點A,B,且.考點:本題主要考查橢圓的標準方程,直線與橢圓的位置關系,圓與橢圓的位置關系.點評:中檔題,涉及直線與圓錐曲線的位置關系問題,往往要利用韋達定理.存在性問題,往往從假設存在出發,運用題中條件探尋得到存在的是否條件具備.(2)小題解答中,集合韋達定理,應用平面向量知識證明了圓的存在性.21.(1)(2)最大值.【答案解析】

(1)根據通

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論