2022屆江蘇省揚州市高郵市中考猜題數學試卷含解析_第1頁
2022屆江蘇省揚州市高郵市中考猜題數學試卷含解析_第2頁
2022屆江蘇省揚州市高郵市中考猜題數學試卷含解析_第3頁
2022屆江蘇省揚州市高郵市中考猜題數學試卷含解析_第4頁
2022屆江蘇省揚州市高郵市中考猜題數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.1cm2的電子屏上約有細菌135000個,135000用科學記數法表示為()A.0.135×106 B.1.35×105 C.13.5×104 D.135×1032.如圖是一個由正方體和一個正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.3.已知二次函數(為常數),當自變量的值滿足時,與其對應的函數值的最小值為4,則的值為()A.1或5 B.或3 C.或1 D.或54.九章算術是中國古代數學專著,九章算術方程篇中有這樣一道題:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,問幾何步及之?”這是一道行程問題,意思是說:走路快的人走100步的時候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追趕,問走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,設走路快的人要走

x

步才能追上走路慢的人,那么,下面所列方程正確的是A. B. C. D.5.如圖,某計算機中有、、三個按鍵,以下是這三個按鍵的功能.(1).:將熒幕顯示的數變成它的正平方根,例如:熒幕顯示的數為49時,按下后會變成1.(2).:將熒幕顯示的數變成它的倒數,例如:熒幕顯示的數為25時,按下后會變成0.2.(3).:將熒幕顯示的數變成它的平方,例如:熒幕顯示的數為6時,按下后會變成3.若熒幕顯示的數為100時,小劉第一下按,第二下按,第三下按,之后以、、的順序輪流按,則當他按了第100下后熒幕顯示的數是多少()A.0.01 B.0.1 C.10 D.1006.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.107.如果關于x的一元二次方程k2x2-(2k+1)x+1=0有兩個不相等的實數根,那么k的取值范圍是()A.k>- B.k>-且 C.k<- D.k-且8.計算(﹣5)﹣(﹣3)的結果等于()A.﹣8B.8C.﹣2D.29.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.4810.如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發,沿A→D→E→F→G→B的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數圖象大致是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.在數學課上,老師提出如下問題:尺規作圖:確定圖1中所在圓的圓心.已知:.求作:所在圓的圓心.曈曈的作法如下:如圖2,(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.老師說:“曈曈的作法正確.”請你回答:曈曈的作圖依據是_____.12.已知一個多邊形的每一個內角都是,則這個多邊形是_________邊形.13.一個不透明的袋子中裝有6個球,其中2個紅球、4個黑球,這些球除顏色外無其他差別.現從袋子中隨機摸出一個球,則它是黑球的概率是______.14.方程的解為__________.15.計算:___.16.將直尺和直角三角尺按如圖方式擺放.若,,則________.17.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.(1)求證:CF是⊙O的切線;(2)若∠F=30°,EB=6,求圖中陰影部分的面積.(結果保留根號和π)19.(5分)如圖,一次函數y=kx+b與反比例函數y=m求反比例函數和一次函數的解析式;直接寫出當x>0時,kx+b<m20.(8分)某商店經營兒童益智玩具,已知成批購進時的單價是20元.調查發現:銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件玩具售價不能高于40元.設每件玩具的銷售單價上漲了x元時(x為正整數),月銷售利潤為y元.求y與x的函數關系式并直接寫出自變量x的取值范圍.每件玩具的售價定為多少元時,月銷售利潤恰為2520元?每件玩具的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?21.(10分)如圖所示,在正方形ABCD中,E,F分別是邊AD,CD上的點,AE=ED,DF=DC,連結EF并延長交BC的延長線于點G,連結BE.求證:△ABE∽△DEF.若正方形的邊長為4,求BG的長.22.(10分)對x,y定義一種新運算T,規定T(x,y)=(其中a,b是非零常數,且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.23.(12分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC、AB于點E、F.(1)若∠B=30°,求證:以A、O、D、E為頂點的四邊形是菱形.(2)若AC=6,AB=10,連結AD,求⊙O的半徑和AD的長.24.(14分)如圖,在方格紙中.(1)請在方格紙上建立平面直角坐標系,使,,并求出點坐標;(2)以原點為位似中心,相似比為2,在第一象限內將放大,畫出放大后的圖形;(3)計算的面積.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據科學記數法的表示形式(a×10n的形式,其中1≤|a|<10,n為整數,確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同;當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數).【詳解】解:135000用科學記數法表示為:1.35×1.故選B.【點睛】科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.2、A【解析】

對一個物體,在正面進行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【詳解】解:由主視圖的定義可知A選項中的圖形為該立體圖形的主視圖,故選擇A.【點睛】本題考查了三視圖的概念.3、D【解析】

由解析式可知該函數在時取得最小值0,拋物線開口向上,當時,y隨x的增大而增大;當時,y隨x的增大而減??;根據時,函數的最小值為4可分如下三種情況:①若,時,y取得最小值4;②若-1<h<3時,當x=h時,y取得最小值為0,不是4;③若,當x=3時,y取得最小值4,分別列出關于h的方程求解即可.【詳解】解:∵當x>h時,y隨x的增大而增大,當時,y隨x的增大而減小,并且拋物線開口向上,

∴①若,當時,y取得最小值4,

可得:4,

解得或(舍去);

②若-1<h<3時,當x=h時,y取得最小值為0,不是4,

∴此種情況不符合題意,舍去;

③若-1≤x≤3<h,當x=3時,y取得最小值4,

可得:,

解得:h=5或h=1(舍).

綜上所述,h的值為-3或5,

故選:D.【點睛】本題主要考查二次函數的性質和最值,根據二次函數的性質和最值分類討論是解題的關鍵.4、B【解析】解:設走路快的人要走x步才能追上走路慢的人,根據題意得:.故選B.點睛:本題考查了一元一次方程的應用.找準等量關系,列方程是關鍵.5、B【解析】

根據題中的按鍵順序確定出顯示的數即可.【詳解】解:根據題意得:=40,=0.4,0.42=0.04,=0.4,=40,402=400,400÷6=46…4,則第400次為0.4.故選B.【點睛】此題考查了計算器﹣數的平方,弄清按鍵順序是解本題的關鍵.6、D【解析】

利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,

∴∠BAD=90°,點O是線段BD的中點,

∵點M是AB的中點,

∴OM是△ABD的中位線,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質,利用三角形中位線定理求得AD的長度是解題的關鍵.7、B【解析】

在與一元二次方程有關的求值問題中,必須滿足下列條件:(1)二次項系數不為零;(2)在有兩個實數根下必須滿足△=b2-4ac≥1.【詳解】由題意知,k≠1,方程有兩個不相等的實數根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.因此可求得k>且k≠1.故選B.【點睛】本題考查根據根的情況求參數,熟記判別式與根的關系是解題的關鍵.8、C【解析】分析:減去一個數,等于加上這個數的相反數.依此計算即可求解.詳解:(-5)-(-3)=-1.故選:C.點睛:考查了有理數的減法,方法指引:①在進行減法運算時,首先弄清減數的符號;②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數的性質符號(減數變相反數).9、D【解析】

由平移的性質知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質,平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應點之間的距離就是平移的距離.10、B【解析】解:當點P在AD上時,△ABP的底AB不變,高增大,所以△ABP的面積S隨著時間t的增大而增大;當點P在DE上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在EF上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減?。划旤cP在FG上時,△ABP的底AB不變,高不變,所以△ABP的面積S不變;當點P在GB上時,△ABP的底AB不變,高減小,所以△ABP的面積S隨著時間t的減小而減??;故選B.二、填空題(共7小題,每小題3分,滿分21分)11、①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【解析】

(1)在上任意取一點,分別連接,;(2)分別作弦,的垂直平分線,兩條垂直平分線交于點.點就是所在圓的圓心.【詳解】解:根據線段的垂直平分線的性質定理可知:,所以點是所在圓的圓心(理由①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓):)故答案為①線段垂直平分線上的點到線段兩端點的距離相等②圓的定義(到定點的距離等于定長的點的軌跡是圓)【點睛】本題考查作圖﹣復雜作圖、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.12、十【解析】

先求出每一個外角的度數,再根據邊數=360°÷外角的度數計算即可.【詳解】解:180°﹣144°=36°,360°÷36°=1,∴這個多邊形的邊數是1.故答案為十.【點睛】本題主要考查了多邊形的內角與外角的關系,求出每一個外角的度數是關鍵.13、【解析】

根據概率的概念直接求得.【詳解】解:4÷6=.故答案為:.【點睛】本題用到的知識點為:概率=所求情況數與總情況數之比.14、【解析】

兩邊同時乘,得到整式方程,解整式方程后進行檢驗即可.【詳解】解:兩邊同時乘,得,解得,檢驗:當時,≠0,所以x=1是原分式方程的根,故答案為:x=1.【點睛】本題考查了解分式方程,熟練掌握解分式方程的一般步驟以及注意事項是解題的關鍵.15、【解析】

直接利用負指數冪的性質以及零指數冪的性質分別化簡得出答案.【詳解】原式.故答案為.【點睛】本題考查了實數運算,正確化簡各數是解題的關鍵.16、80°.【解析】

由于直尺外形是矩形,根據矩形的性質可知對邊平行,所以∠4=∠3,再根據外角的性質即可求出結果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質和三角形外角的性質,掌握三角形外角的性質是解題的關鍵.17、【解析】

解:連接AG,由旋轉變換的性質可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點睛】本題考查的是旋轉變換的性質、相似三角形的判定和性質,掌握勾股定理、矩形的性質、旋轉變換的性質是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)93﹣3π【解析】試題分析:(1)、連接OD,根據平行四邊形的性質得出∠AOC=∠OBE,∠COD=∠ODB,結合OB=OD得出∠DOC=∠AOC,從而證明出△COD和△COA全等,從而的得出答案;(2)、首先根據題意得出△OBD為等邊三角形,根據等邊三角形的性質得出EC=ED=BO=DB,根據Rt△AOC的勾股定理得出AC的長度,然后根據陰影部分的面積等于兩個△AOC的面積減去扇形OAD的面積得出答案.試題解析:(1)如圖連接OD.∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切線.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA?tan60°=3,∴S陰=2?S△AOC﹣S扇形OAD=2××3×3﹣120Π×32360=9﹣3π.19、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標為(【解析】

(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據圖像解答即可;(3)作B關于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,然后用待定系數法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數的解析式為y=﹣x+5;(2)根據圖象得當0<x<1或x>4,一次函數y=﹣x+5的圖象在反比例函數y=4x∴當x>0時,kx+b<mx(3)如圖,作B關于x軸的對稱點B′,連接AB′,交x軸于P,此時PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點P的坐標為(175【點睛】本題考查了待定系數法求反比例函數及一次函數解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數法是解(1)的關鍵,正確識圖是解(2)的關鍵,根據軸對稱的性質確定出點P的位置是解答(3)的關鍵.20、(1)y=﹣10x2+130x+2300,0<x≤10且x為正整數;(2)每件玩具的售價定為32元時,月銷售利潤恰為2520元;(3)每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【解析】

(1)根據題意知一件玩具的利潤為(30+x-20)元,月銷售量為(230-10x),然后根據月銷售利潤=一件玩具的利潤×月銷售量即可求出函數關系式.(2)把y=2520時代入y=-10x2+130x+2300中,求出x的值即可.(3)把y=-10x2+130x+2300化成頂點式,求得當x=6.5時,y有最大值,再根據0<x≤10且x為正整數,分別計算出當x=6和x=7時y的值即可.【詳解】(1)根據題意得:y=(30+x﹣20)(230﹣10x)=﹣10x2+130x+2300,自變量x的取值范圍是:0<x≤10且x為正整數;(2)當y=2520時,得﹣10x2+130x+2300=2520,解得x1=2,x2=11(不合題意,舍去)當x=2時,30+x=32(元)答:每件玩具的售價定為32元時,月銷售利潤恰為2520元.(3)根據題意得:y=﹣10x2+130x+2300=﹣10(x﹣6.5)2+2722.5,∵a=﹣10<0,∴當x=6.5時,y有最大值為2722.5,∵0<x≤10且x為正整數,∴當x=6時,30+x=36,y=2720(元),當x=7時,30+x=37,y=2720(元),答:每件玩具的售價定為36元或37元時,每個月可獲得最大利潤,最大的月利潤是2720元.【點睛】本題主要考查了二次函數的實際應用,解題的關鍵是分析題意,找到關鍵描述語,求出函數的解析式,用到的知識點是二次函數的性質和解一元二次方程.21、(1)見解析;(2)BG=BC+CG=1.【解析】

(1)利用正方形的性質,可得∠A=∠D,根據已知可得AE:AB=DF:DE,根據有兩邊對應成比例且夾角相等三角形相似,可得△ABE∽△DEF;(2)根據相似三角形的預備定理得到△EDF∽△GCF,再根據相似的性質即可求得CG的長,那么BG的長也就不難得到.【詳解】(1)證明:∵ABCD為正方形,∴AD=AB=DC=BC,∠A=∠D=90°.∵AE=ED,∴AE:AB=1:2.∵DF=DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD為正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=DC,正方形的邊長為4,∴ED=2,CG=6,∴BG=BC+CG=1.【點睛】本題考查了正方形的性質,相似三角形的判定與性質,熟練掌握相似三角形的判定與性質是解答本題的關鍵.22、(1);(2)①a=1,b=-1,②m=2.【解析】

(1)根據題目中的新運算法則計算即可;(2)①根據題意列出方程組即可求出a,b的值;②先分別算出T(3m﹣3,m)與T(m,3m﹣3)的值,再根據求出的值列出等式即可得出結論.【詳解】解:(1)T(4,﹣1)==;故答案為;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,當T(x,y)=T(y,x)時,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【點睛】本題關鍵是能夠把新運算轉化為我們學過的知識,并應用一元一次

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論