2022屆江蘇省江都大橋初中重點中學中考數學模擬試題含解析_第1頁
2022屆江蘇省江都大橋初中重點中學中考數學模擬試題含解析_第2頁
2022屆江蘇省江都大橋初中重點中學中考數學模擬試題含解析_第3頁
2022屆江蘇省江都大橋初中重點中學中考數學模擬試題含解析_第4頁
2022屆江蘇省江都大橋初中重點中學中考數學模擬試題含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是()A.2x﹣x=1 B.x2?x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y62.一元二次方程的根的情況是()A.有一個實數根 B.有兩個相等的實數根C.有兩個不相等的實數根 D.沒有實數根3.某服裝店用10000元購進一批某品牌夏季襯衫若干件,很快售完;該店又用14700元錢購進第二批這種襯衫,所進件數比第一批多40%,每件襯衫的進價比第一批每件襯衫的進價多10元,求第一批購進多少件襯衫?設第一批購進x件襯衫,則所列方程為()A.﹣10= B.+10=C.﹣10= D.+10=4.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數,固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數據,并算出兩數之和,其中“和為7”的頻數及頻率如下表:轉盤總次數10203050100150180240330450“和為7”出現頻數27101630465981110150“和為7”出現頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續進行下去,根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.355.下列調查中,最適合采用普查方式的是()A.對太原市民知曉“中國夢”內涵情況的調查B.對全班同學1分鐘仰臥起坐成績的調查C.對2018年央視春節聯歡晚會收視率的調查D.對2017年全國快遞包裹產生的包裝垃圾數量的調查6.如圖,已知△ABC,△DCE,△FEG,△HGI是4個全等的等腰三角形,底邊BC,CE,EG,GI在同一直線上,且AB=2,BC=1.連接AI,交FG于點Q,則QI=()A.1 B. C. D.7.如圖,將半徑為2的圓形紙片折疊后,圓弧恰好經過圓心,則折痕的長度為()A. B.2 C. D.8.若一個圓錐的底面半徑為3cm,母線長為5cm,則這個圓錐的全面積為()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm29.下列調查中,調查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時間,選擇全面調查B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇全面調查C.為了解神舟飛船設備零件的質量情況,選擇抽樣調查D.為了解一批節能燈的使用壽命,選擇抽樣調查10.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規律進行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.今年,某縣境內跨湖高速進入施工高峰期,交警隊為提醒出行車輛,在一些主要路口設立了交通路況警示牌(如圖).已知立桿AD高度是4m,從側面C點測得警示牌頂端點A和底端B點的仰角(∠ACD和∠BCD)分別是60°,45°.那么路況警示牌AB的高度為_____.12.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.13.以矩形ABCD兩條對角線的交點O為坐標原點,以平行于兩邊的方向為坐標軸,建立如圖所示的平面直角坐標系,BE⊥AC,垂足為E.若雙曲線y=32x14.我們知道:1+3=4,1+3+5=9,1+3+5+7=16,…,觀察下面的一列數:-1,2,,-3,4,-5,6…,將這些數排列成如圖的形式,根據其規律猜想,第20行從左到右第3個數是.15.定義:在平面直角坐標系xOy中,把從點P出發沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環保低碳的共享單車,正式成為市民出行喜歡的交通工具.設A,B,C三個小區的坐標分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.16.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.17.已知實數x,y滿足,則以x,y的值為兩邊長的等腰三角形的周長是______.三、解答題(共7小題,滿分69分)18.(10分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點P,使△APD為等腰三角形,那么請畫出滿足條件的一個等腰三角形△APD,并求出此時BP的長;(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點,當AD=6時,BC邊上存在一點Q,使∠EQF=90°,求此時BQ的長;問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛人員想在線段CD上選一點M安裝監控裝置,用來監視邊AB,現只要使∠AMB大約為60°,就可以讓監控裝置的效果達到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點M,使∠AMB=60°?若存在,請求出符合條件的DM的長,若不存在,請說明理由.19.(5分)對于平面直角坐標系中的點,將它的縱坐標與橫坐標的比稱為點的“理想值”,記作.如的“理想值”.(1)①若點在直線上,則點的“理想值”等于_______;②如圖,,的半徑為1.若點在上,則點的“理想值”的取值范圍是_______.(2)點在直線上,的半徑為1,點在上運動時都有,求點的橫坐標的取值范圍;(3),是以為半徑的上任意一點,當時,畫出滿足條件的最大圓,并直接寫出相應的半徑的值.(要求畫圖位置準確,但不必尺規作圖)20.(8分)問題:將菱形的面積五等分.小紅發現只要將菱形周長五等分,再將各分點與菱形的對角線交點連接即可解決問題.如圖,點O是菱形ABCD的對角線交點,AB=5,下面是小紅將菱形ABCD面積五等分的操作與證明思路,請補充完整.(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=______,連接OF;(3)在CD邊上取點G,使CG=______,連接OG;(4)在DA邊上取點H,使DH=______,連接OH.由于AE=______+______=______+______=______+______=______.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.21.(10分)為了解中學生“平均每天體育鍛煉時間”的情況,某地區教育部門隨機調查了若干名中學生,根據調查結果制作統計圖①和圖②,請根據相關信息,解答下列問題:(1)本次接受隨機抽樣調查的中學生人數為_______,圖①中m的值是_____;(2)求本次調查獲取的樣本數據的平均數、眾數和中位數;(3)根據統計數據,估計該地區250000名中學生中,每天在校體育鍛煉時間大于等于1.5h的人數.22.(10分)已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,FB交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?3.(12分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統計圖中表示C等次的扇形所對的圓心角的度數為度;(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.24.(14分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.求證:△ADE≌△CBF;若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結論.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據合并同類項的法則,積的乘方,完全平方公式,同底數冪的乘法的性質,對各選項分析判斷后利用排除法求解.【詳解】解:A、2x-x=x,錯誤;B、x2?x3=x5,錯誤;C、(m-n)2=m2-2mn+n2,錯誤;D、(-xy3)2=x2y6,正確;故選D.【點睛】考查了整式的運算能力,對于相關的整式運算法則要求學生很熟練,才能正確求出結果.2、D【解析】試題分析:△=22-4×4=-12<0,故沒有實數根;故選D.考點:根的判別式.3、B【解析】

根據題意表示出襯衫的價格,利用進價的變化得出等式即可.【詳解】解:設第一批購進x件襯衫,則所列方程為:+10=.故選B.【點睛】此題主要考查了由實際問題抽象出分式方程,正確找出等量關系是解題關鍵.4、A【解析】

根據上表數據,出現“和為7”的頻率將穩定在它的概率附近,估計出現“和為7”的概率即可.【詳解】由表中數據可知,出現“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.5、B【解析】分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似.詳解:A、調查范圍廣適合抽樣調查,故A不符合題意;B、適合普查,故B符合題意;C、調查范圍廣適合抽樣調查,故C不符合題意;D、調查范圍廣適合抽樣調查,故D不符合題意;故選:B.點睛:本題考查了抽樣調查和全面調查的區別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.6、D【解析】解:∵△ABC、△DCE、△FEG是三個全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故選D.點睛:本題主要考查了平行線分線段定理,以及三角形相似的判定,正確理解AB∥CD∥EF,AC∥DE∥FG是解題的關鍵.7、C【解析】

過O作OC⊥AB,交圓O于點D,連接OA,由垂徑定理得到C為AB的中點,再由折疊得到CD=OC,求出OC的長,在直角三角形AOC中,利用勾股定理求出AC的長,即可確定出AB的長.【詳解】過O作OC⊥AB,交圓O于點D,連接OA,由折疊得到CD=OC=OD=1cm,在Rt△AOC中,根據勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:AC=cm,則AB=2AC=2cm.故選C.【點睛】此題考查了垂徑定理,勾股定理,以及翻折的性質,熟練掌握垂徑定理是解本題的關鍵.8、B【解析】試題分析:底面積是:9πcm1,底面周長是6πcm,則側面積是:×6π×5=15πcm1.則這個圓錐的全面積為:9π+15π=14πcm1.故選B.考點:圓錐的計算.9、D【解析】

A.為了解襄陽市初中每天鍛煉所用時間,選擇抽樣調查,故A不符合題意;B.為了解襄陽市電視臺《襄陽新聞》欄目的收視率,選擇抽樣調查,故B不符合題意;C.為了解神舟飛船設備零件的質量情況,選普查,故C不符合題意;D.為了解一批節能燈的使用壽命,選擇抽樣調查,故D符合題意;故選D.10、A【解析】分析:連接OE1,OD1,OD2,如圖,根據正六邊形的性質得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據切線的性質得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數)等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.二、填空題(共7小題,每小題3分,滿分21分)11、m【解析】

由特殊角的正切值即可得出線段CD的長度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD長度,再利用線段間的關系即可得出結論.【詳解】在Rt△ADC中,∠ACD=60°,AD=4∴tan60°==∴CD=∵在Rt△BCD中,∠BAD=45°,CD=∴BD=CD=.∴AB=AD-BD=4-=路況警示牌AB的高度為m.故答案為:m.【點睛】解直角三角形的應用-仰角俯角問題.12、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.13、1【解析】

由雙曲線y=32x(x>0)經過點D知S△ODF=12k=34,由矩形性質知S△AOB=2S△ODF【詳解】如圖,∵雙曲線y=32x∴S△ODF=12k=3則S△AOB=2S△ODF=32,即12OA?BE=∴OA?BE=1,∵四邊形ABCD是矩形,∴OA=OB,∴OB?BE=1,故答案為:1.【點睛】本題主要考查反比例函數圖象上的點的坐標特征,解題的關鍵是掌握反比例函數系數k的幾何意義及矩形的性質.14、2【解析】

先求出19行有多少個數,再加3就等于第20行第三個數是多少.然后根據奇偶性來決定負正.【詳解】∵1行1個數,2行3個數,3行5個數,4行7個數,…19行應有2×19-1=37個數∴到第19行一共有1+3+5+7+9+…+37=19×19=1.第20行第3個數的絕對值是1+3=2.又2是偶數,故第20行第3個數是2.15、(1,﹣2).【解析】

若設M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).16、5【解析】

已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關鍵.17、1或2【解析】

先根據非負數的性質列式求出x、y的值,再分x的值是腰長與底邊兩種情況討論求解.【詳解】根據題意得,x-5=0,y-7=0,解得x=5,y=7,①5是腰長時,三角形的三邊分別為5、5、7,三角形的周長為1.②5是底邊時,三角形的三邊分別為5、7、7,能組成三角形,5+7+7=2;所以,三角形的周長為:1或2;故答案為1或2.【點睛】本題考查了等腰三角形的性質,絕對值與算術平方根的非負性,根據幾個非負數的和等于0,則每一個算式都等于0求出x、y的值是解題的關鍵,難點在于要分情況討論并且利用三角形的三邊關系進行判斷.三、解答題(共7小題,滿分69分)18、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】

(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運用三角形全等、矩形的性質、勾股定理等知識即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點Q唯一,然后通過添加輔助線,借助于正方形、特殊角的三角函數值等知識即可求出BQ長.(4)要滿足∠AMB=40°,可構造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點就是滿足條件的點,然后借助于等邊三角形的性質、特殊角的三角函數值等知識,就可算出符合條件的DM長.【詳解】(1)①作AD的垂直平分線交BC于點P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點D為圓心,AD為半徑畫弧,交BC于點P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點A為圓心,AD為半徑畫弧,交BC于點P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點,∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過點O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過點E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當∠EQF=90°時,BQ的長為4+.(4)在線段CD上存在點M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設GP與AK交于點O,以點O為圓心,OA為半徑作⊙O,過點O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設交點為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點M在點H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點M不在線段CD上,應舍去.若點M在點H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點M在線段CD上.綜上所述:在線段CD上存在唯一的點M,使∠AMB=40°,此時DM的長為(200-25-40)米.【點睛】本題考查了垂直平分線的性質、矩形的性質、等邊三角形的性質、正方形的判定與性質、直線與圓的位置關系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質、勾股定理、特殊角的三角函數值等知識,考查了操作、探究等能力,綜合性非常強.而構造等邊三角形及其外接圓是解決本題的關鍵.19、(1)①﹣3;②;(2);(3)【解析】

(1)①把Q(1,a)代入y=x-4,可求出a值,根據理想值定義即可得答案;②由理想值越大,點與原點連線與軸夾角越大,可得直線與相切時理想值最大,與x中相切時,理想值最小,即可得答案;(2)根據題意,討論與軸及直線相切時,LQ取最小值和最大值,求出點橫坐標即可;(3)根據題意將點轉化為直線,點理想值最大時點在上,分析圖形即可.【詳解】(1)①∵點在直線上,∴,∴點的“理想值”=-3,故答案為:﹣3.②當點在與軸切點時,點的“理想值”最小為0.當點縱坐標與橫坐標比值最大時,的“理想值”最大,此時直線與切于點,設點Q(x,y),與x軸切于A,與OQ切于Q,∵C(,1),∴tan∠COA==,∴∠COA=30°,∵OQ、OA是的切線,∴∠QOA=2∠COA=60°,∴=tan∠QOA=tan60°=,∴點的“理想值”為,故答案為:.(2)設直線與軸、軸的交點分別為點,點,當x=0時,y=3,當y=0時,x+3=0,解得:x=,∴,.∴,,∴tan∠OAB=,∴.∵,∴①如圖,作直線.當與軸相切時,LQ=0,相應的圓心滿足題意,其橫坐標取到最大值.作軸于點,∴,∴.∵的半徑為1,∴.∴,∴.∴.②如圖當與直線相切時,LQ=,相應的圓心滿足題意,其橫坐標取到最小值.作軸于點,則.設直線與直線的交點為.∵直線中,k=,∴,∴,點F與Q重合,則.∵的半徑為1,∴.∴.∴,∴.∴.由①②可得,的取值范圍是.(3)∵M(2,m),∴M點在直線x=2上,∵,∴LQ取最大值時,=,∴作直線y=x,與x=2交于點N,當M與ON和x軸同時相切時,半徑r最大,根據題意作圖如下:M與ON相切于Q,與x軸相切于E,把x=2代入y=x得:y=4,∴NE=4,OE=2,ON==6,∴∠MQN=∠NEO=90°,又∵∠ONE=∠MNQ,∴,∴,即,解得:r=.∴最大半徑為.【點睛】本題是一次函數和圓的綜合題,主要考查了一次函數和圓的切線的性質,解答時要注意做好數形結合,根據圖形進行分類討論.20、(1)見解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA【解析】

利用菱形四條邊相等,分別在四邊上進行截取和連接,得出AE=EB+BF=FC+CG+GD+DH=HA,進一步求得S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.即可.【詳解】(1)在AB邊上取點E,使AE=4,連接OA,OE;(2)在BC邊上取點F,使BF=3,連接OF;(3)在CD邊上取點G,使CG=2,連接OG;(4)在DA邊上取點H,使DH=1,連接OH.由于AE=EB+BF=FC+CG=GD+DH=HA.可證S△AOE=S四邊形EOFB=S四邊形FOGC=S四邊形GOHD=S△HOA.故答案為:3,2,1;EB、BF;FC、CG;GD、DH;HA.【點睛】此題考查菱形的性質,熟練掌握菱形的四條邊相等,對角線互相垂直是解題的關鍵.21、(1)250、12;(2)平均數:1.38h;眾數:1.5h;中位數:1.5h;(3)160000人;【解析】

(1)根據題意,本次接受調查的學生總人數為各個金額人數之和,用總概率減去其他金額的概率即可求得m值.(2)平均數為一組數據中所有數據之和再除以這組數據的個數;眾數是在一組數據中出現次數最多的數;中位數是將一組數據按大小順序排列,處于最中間位置的一個數據,或是最中間兩個數據的平均數,據此求解即可.(3)根據樣本估計總體,用“每天在校體育鍛煉時間大于等于1.5h的人數”的概率乘以全??側藬登蠼饧纯桑驹斀狻浚?)本次接受隨機抽樣調查的中學生人數為60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案為250、12;(2)平均數為=1.38(h),眾數為1.5h,中位數為=1.5h;(3)估計每天在校體育鍛煉時間大于等于1.5h的人數約為250000×=160000人.【點睛】本題主要考查數據的收集、處理以及統計圖表.22、(1)詳見解析;(2)∠BDE=20°.【解析】

(1)根據已知條件易證BC∥DF,根據平行線的性質可得∠F=∠PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據平行四邊形的性質可得BC=DH=1,在Rt△ABC中,用銳角三角函數求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據三角形外角的性質可得∠OAD=∠DOC=20°,最后根據圓周角定理及平行線的性質即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論