




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.學習全等三角形時,數學興趣小組設計并組織了“生活中的全等”的比賽,全班同學的比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分的眾數和中位數分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分2.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據題意,可列出二元一次方程組為()A. B. C. D.3.將一把直尺與一塊直角三角板如圖放置,如果,那么的度數為().A. B. C. D.4.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm5.下列因式分解正確的是A. B.C. D.6.函數y=1-xA.x>1 B.x<1 C.x≤1 D.x≥17.如圖,已知函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>08.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.9.如圖,將△ABC繞點A逆時針旋轉一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數為().A.60° B.75° C.85° D.90°10.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.18二、填空題(共7小題,每小題3分,滿分21分)11.如圖是我市某連續7天的最高氣溫與最低氣溫的變化圖,根據圖中信息可知,這7天中最大的日溫差是℃.12.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.13.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側,頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.14.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為_____cm1.15.把拋物線y=2x2向右平移3個單位,再向下平移2個單位,得到的新的拋物線的表達式是_____.16.已知a,b為兩個連續的整數,且a<<b,則ba=_____.17.拋物線y=﹣x2+4x﹣1的頂點坐標為.三、解答題(共7小題,滿分69分)18.(10分)尺規作圖:用直尺和圓規作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.19.(5分)某初級中學正在展開“文明城市創建人人參與,志愿服務我當先行”的“創文活動”為了了解該校志愿者參與服務情況,現對該校全體志愿者進行隨機抽樣調查.根據調查數據繪制了如下所示不完整統計圖.條形統計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統計圖中的百分數指的是該年級被抽到的志愿者數與樣本容量的比.請補全條形統計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?20.(8分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設拋物線的對稱軸與x軸交于點P,D為第四象限內的一點,若△CPD為等腰直角三角形,求出D點坐標.21.(10分)現有一次函數y=mx+n和二次函數y=mx2+nx+1,其中m≠0,若二次函數y=mx2+nx+1經過點(2,0),(3,1),試分別求出兩個函數的解析式.若一次函數y=mx+n經過點(2,0),且圖象經過第一、三象限.二次函數y=mx2+nx+1經過點(a,y1)和(a+1,y2),且y1>y2,請求出a的取值范圍.若二次函數y=mx2+nx+1的頂點坐標為A(h,k)(h≠0),同時二次函數y=x2+x+1也經過A點,已知﹣1<h<1,請求出m的取值范圍.22.(10分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數,并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數.若∠A=n°,求∠BOC的度數.23.(12分)如圖,在中,,以邊為直徑作⊙交邊于點,過點作于點,、的延長線交于點.求證:是⊙的切線;若,且,求⊙的半徑與線段的長.24.(14分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數圖象的伴侶正方形.如圖,正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.(1)若某函數是一次函數y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數是反比例函數(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數解析式;(3)若某函數是二次函數y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數是奇數還是偶數?_____.(本小題只需直接寫出答案)
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
解:根據表格中的數據,可知70出現的次數最多,可知其眾數為70分;把數據按從小到大排列,可知其中間的兩個的平均數為80分,故中位數為80分.故選C.【點睛】本題考查數據分析.2、A【解析】
根據題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.3、D【解析】
根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠1,再根據兩直線平行,同位角相等可得∠2=∠1.【詳解】如圖,由三角形的外角性質得:∠1=90°+∠1=90°+58°=148°.∵直尺的兩邊互相平行,∴∠2=∠1=148°.故選D.【點睛】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.4、B【解析】
根據作法可知MN是AC的垂直平分線,利用垂直平分線的性質進行求解即可得答案.【詳解】解:根據作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點睛】本題考查作圖-基本作圖,線段的垂直平分線的性質等知識,解題的關鍵是熟練掌握線段的垂直平分線的性質.5、D【解析】
直接利用提取公因式法以及公式法分解因式,進而判斷即可.【詳解】解:A、,無法直接分解因式,故此選項錯誤;B、,無法直接分解因式,故此選項錯誤;C、,無法直接分解因式,故此選項錯誤;D、,正確.故選:D.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確應用公式是解題關鍵.6、C【解析】試題分析:根據二次根式的性質,被開方數大于或等于0,可以求出x的范圍.試題解析:根據題意得:1-x≥0,解得:x≤1.故選C.考點:函數自變量的取值范圍.7、C【解析】
首先求出P點坐標,進而利用函數圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數y=﹣與函數y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點睛】本題考查了反比例函數圖象上點的坐標特征,解題的關鍵是正確得出P點坐標.8、C【解析】
結合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.9、C【解析】試題分析:根據旋轉的性質知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數為85°.故選C.考點:旋轉的性質.10、A【解析】
由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.【點睛】本題考查了菱形的性質、正方形的性質以及等邊三角形的判定與性質.此題難度不大,注意掌握數形結合思想的應用.二、填空題(共7小題,每小題3分,滿分21分)11、11.【解析】試題解析:∵由折線統計圖可知,周一的日溫差=8℃+1℃=9℃;周二的日溫差=7℃+1℃=8℃;周三的日溫差=8℃+1℃=9℃;周四的日溫差=9℃;周五的日溫差=13℃﹣5℃=8℃;周六的日溫差=15℃﹣71℃=8℃;周日的日溫差=16℃﹣5℃=11℃,∴這7天中最大的日溫差是11℃.考點:1.有理數大小比較;2.有理數的減法.12、【解析】【分析】連接半徑和弦AE,根據直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質,含30度角的直角三角形的性質等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.13、﹣1.【解析】
由題意得:當頂點在M處,點A橫坐標為-3,可以求出拋物線的a值;當頂點在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當頂點在M處,點A橫坐標為-3,則拋物線的表達式為:y=a(x+1)2+4,將點A坐標(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當x=-1時,y=a-b+c,頂點在N處時,y=a-b+c取得最小值,頂點在N處,拋物線的表達式為:y=-(x-3)2+1,當x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點睛】本題考查的是二次函數知識的綜合運用,本題的核心是確定頂點在M、N處函數表達式,其中函數的a值始終不變.14、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點:扇形面積的計算.15、y=1(x﹣3)1﹣1.【解析】
拋物線的平移,實際上就是頂點的平移,先求出原拋物線的頂點坐標,再根據平移規律,推出新拋物線的頂點坐標,根據頂點式可求新拋物線的解析式.【詳解】∵y=1x1的頂點坐標為(0,0),∴把拋物線右平移3個單位,再向下平移1個單位,得新拋物線頂點坐標為(3,﹣1),∵平移不改變拋物線的二次項系數,∴平移后的拋物線的解析式是y=1(x﹣3)1﹣1.故答案為y=1(x﹣3)1﹣1.【點睛】本題考查了二次函數圖象的平移,其規律是是:將二次函數解析式轉化成頂點式y=a(x-h)1+k
(a,b,c為常數,a≠0),確定其頂點坐標(h,k),在原有函數的基礎上“h值正右移,負左移;k值正上移,負下移”.16、1【解析】
根據已知a<<b,結合a、b是兩個連續的整數可得a、b的值,即可求解.【詳解】解:∵a,b為兩個連續的整數,且a<<b,∴a=2,b=3,∴ba=32=1.故答案為1.【點睛】此題考查的是如何根據無理數的范圍確定兩個有理數的值,題中根據的取值范圍,可以很容易得到其相鄰兩個整數,再結合已知條件即可確定a、b的值,17、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y=﹣x2+4x﹣1轉化為頂點式解析式y=﹣(x﹣2)2+3,然后求其頂點坐標為:(2,3).考點:二次函數的性質三、解答題(共7小題,滿分69分)18、見解析【解析】
作∠CAB=∠α,再作∠CAB的平分線,在角平分線上截取AD=h,可得點D,過點D作AD的垂線,從而得出△ABC.【詳解】解:如圖所示,△ABC即為所求.【點睛】考查作圖-復雜作圖,掌握做一個角等于已知角、作角平分線及過直線上一點作已知直線的垂線的基本作圖和等腰三角形的性質是解題的關鍵.19、(1)作圖見解析;(2)1.【解析】試題分析:(1)根據百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總人數=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.20、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】
(1)設解析式為y=a(x-3)(x+1),把點C(0,-3)代入即可求出解析式;(2)根據題意作出圖形,根據等腰直角三角形的性質即可寫出坐標.【詳解】(1)設解析式為y=a(x-3)(x+1),把點C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過點D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點睛】此題主要考察二次函數與等腰直角三角形結合的題,解題的關鍵是熟知二次函數的圖像與性質及等腰直角三角形的性質.21、(1)y=x﹣2,y=x2++1;(2)a<;(3)m<﹣2或m>1.【解析】
(1)直接將點代入函數解析式,用待定系數法即可求解函數解析式;(2)點(2,1)代入一次函數解析式,得到n=?2m,利用m與n的關系能求出二次函數對稱軸x=1,由一次函數經過一、三象限可得m>1,確定二次函數開口向上,此時當y1>y2,只需讓a到對稱軸的距離比a+1到對稱軸的距離大即可求a的范圍.(3)將A(h,k)分別代入兩個二次函數解析式,再結合對稱抽得h=,將得到的三個關系聯立即可得到,再由題中已知?1<h<1,利用h的范圍求出m的范圍.【詳解】(1)將點(2,1),(3,1),代入一次函數y=mx+n中,,解得,∴一次函數的解析式是y=x﹣2,再將點(2,1),(3,1),代入二次函數y=mx2+nx+1,,解得,∴二次函數的解析式是.(2)∵一次函數y=mx+n經過點(2,1),∴n=﹣2m,∵二次函數y=mx2+nx+1的對稱軸是x=,∴對稱軸為x=1,又∵一次函數y=mx+n圖象經過第一、三象限,∴m>1,∵y1>y2,∴1﹣a>1+a﹣1,∴a<.(3)∵y=mx2+nx+1的頂點坐標為A(h,k),∴k=mh2+nh+1,且h=,又∵二次函數y=x2+x+1也經過A點,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴,又∵﹣1<h<1,∴m<﹣2或m>1.【點睛】本題考點:點與函數的關系;二次函數的對稱軸與函數值關系;待定系數法求函數解析式;不等式的解法;數形結合思想是解決二次函數問題的有效方法.22、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】
如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據三角形內角和得到∠1+∠2+∠BOC=180°,利用等式的性質進行變換可得∠BOC=90°+∠A,然后根據此結論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數:①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.23、(1)證明參見解析;(2)半徑長為,=.【解析】
(1)已知點D在圓上,要連半徑證垂直,連結,則,所以,∵,∴.∴,∴∥.由得出,于是得出結論;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年成人高考《語文》語言表達與運用重點難點解析試卷
- 公司員工禮儀培訓
- 2025年統計學期末考試數據分析題庫:概率分布與期望值計算測試試卷
- 2025年成人高考《語文》詩詞格律與名篇鑒賞試卷
- 2025年高壓電工考試題庫(高壓電力系統運行優化)重點難點解析
- 2025年營養師基礎知識考核試卷:營養師職業發展規劃與就業前景試題
- 2025年鄉村醫生考試題庫:農村醫療衛生機構管理公共衛生服務體系建設試題解析
- 自行車鞍座企業縣域市場拓展與下沉戰略研究報告
- 穿孔板共振吸聲結構企業ESG實踐與創新戰略研究報告
- 金融資產管理服務企業ESG實踐與創新戰略研究報告
- HG20202-2014 脫脂工程施工及驗收規范
- 公司收款委托書模板
- 宏觀經濟學全套課件(完整)
- JT-T-808-2019道路運輸車輛衛星定位系統終端通信協議及數據格式
- 鍺γ射線譜儀校準規范
- 七年級下冊數學平行線中拐點問題
- 計算機基礎知識題庫1000道含完整答案(歷年真題)
- 河北省唐山市豐潤區2023-2024學年部編版八年級下學期5月期中歷史試題
- 走進歌劇世界智慧樹知到期末考試答案2024年
- 20G520-1-2鋼吊車梁(6m-9m)2020年合訂本
- 城市綜合安全風險監測預警平臺解決方案( PPT)
評論
0/150
提交評論