




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是()A. B. C. D.2.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π3.如圖,△ABC是⊙O的內接三角形,∠BOC=120°,則∠A等于()A.50° B.60° C.55° D.65°4.如圖,在平行四邊形ABCD中,E是邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F,若∠B=52°,∠DAE=20°,則∠FED′的度數為()A.40° B.36° C.50° D.45°5.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.6.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a7.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°8.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.9.如圖,DE是線段AB的中垂線,,,,則點A到BC的距離是A.4 B. C.5 D.610.實數a、b、c在數軸上的位置如圖所示,則代數式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,某數學興趣小組將邊長為5的正方形鐵絲框ABCD變形為以A為圓心,AB為半徑的扇形(忽略鐵絲的粗細),則所得的扇形ABD的面積為_____.12.因式分解:2b2a2﹣a3b﹣ab3=_____.13.如圖,數軸上不同三點對應的數分別為,其中,則點表示的數是__________.14.方程的根是__________.15.若點A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函數y=(k為常數)的圖象上,則y1、y2、y3的大小關系為________.16.已知一個圓錐體的底面半徑為2,母線長為4,則它的側面展開圖面積是___.(結果保留π)三、解答題(共8題,共72分)17.(8分)學習了正多邊形之后,小馬同學發現利用對稱、旋轉等方法可以計算等分正多邊形面積的方案.(1)請聰明的你將下面圖①、圖②、圖③的等邊三角形分別割成2個、3個、4個全等三角形;(2)如圖④,等邊△ABC邊長AB=4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON=120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;(3)如圖⑤,等邊△ABC的邊長AB=4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點D為BC邊中點,且∠PDQ=120°,若PA=x,請用含x的代數式表示△BDQ的面積S△BDQ.18.(8分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.19.(8分)如圖,在中,,點在上運動,點在上,始終保持與相等,的垂直平分線交于點,交于,判斷與的位置關系,并說明理由;若,,,求線段的長.20.(8分)A、B、C三人玩籃球傳球游戲,游戲規則是:第一次傳球由A將球隨機地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.21.(8分)如圖,關于x的二次函數y=x2+bx+c的圖象與x軸交于點A(1,0)和點B與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.(1)求二次函數的表達式;(2)在y軸上是否存在一點P,使△PBC為等腰三角形?若存在.請求出點P的坐標;(3)有一個點M從點A出發,以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發,以每秒2個單位的速度在拋物線的對稱軸上運動,當點M到達點B時,點M、N同時停止運動,問點M、N運動到何處時,△MNB面積最大,試求出最大面積.22.(10分)小林在沒有量角器和圓規的情況下,利用刻度尺和一副三角板畫出了一個角的平分線,他的作法是這樣的:如圖:(1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OM=ON;(2)利用兩個三角板,分別過點M,N畫OM,ON的垂線,交點為P;(3)畫射線OP.則射線OP為∠AOB的平分線.請寫出小林的畫法的依據______.23.(12分)我市某中學舉辦“網絡安全知識答題競賽”,初、高中部根據初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學校決賽,兩個隊各選出的5名選手的決賽成績如圖所示.平均分(分)中位數(分)眾數(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據圖示計算出a、b、c的值;結合兩隊成績的平均數和中位數進行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩定.24.解不等式組,并把它的解集表示在數軸上.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數.故選A.2、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.3、B【解析】
由圓周角定理即可解答.【詳解】∵△ABC是⊙O的內接三角形,∴∠A=∠BOC,而∠BOC=120°,∴∠A=60°.故選B.【點睛】本題考查了圓周角定理,熟練運用圓周角定理是解決問題的關鍵.4、B【解析】
由平行四邊形的性質得出∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質求出∠AEF=72°,與三角形內角和定理求出∠AED′=108°,即可得出∠FED′的大小.【詳解】∵四邊形ABCD是平行四邊形,∴∠D=∠B=52°,由折疊的性質得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°.故選B.【點睛】本題考查了平行四邊形的性質、折疊的性質、三角形的外角性質以及三角形內角和定理;熟練掌握平行四邊形的性質和折疊的性質,求出∠AEF和∠AED′是解決問題的關鍵.5、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質;2.含30度角的直角三角形;3.弧長的計算.6、C【解析】
根據同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.【點睛】此題主要考查了冪的乘方、同底數冪的乘法,以及合并同類項,關鍵是掌握計算法則.7、D【解析】分析:先根據圓內接四邊形的性質得到然后根據圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.8、B【解析】
陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故答案選:B.【點睛】本題考查的知識點是旋轉的性質及扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質及扇形面積的計算.9、A【解析】
作于利用直角三角形30度角的性質即可解決問題.【詳解】解:作于H.
垂直平分線段AB,
,
,
,
,
,
,
,,
,
故選A.【點睛】本題考查線段的垂直平分線的性質,等腰三角形的性質,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考常考題型.10、A【解析】
根據數軸得到b<a<0<c,根據有理數的加法法則,減法法則得到c-a>0,a+b<0,根據絕對值的性質化簡計算.【詳解】由數軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點睛】本題考查的是實數與數軸,絕對值的性質,能夠根據數軸比較實數的大小,掌握絕對值的性質是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、25【解析】試題解析:由題意12、﹣ab(a﹣b)2【解析】
首先確定公因式為ab,然后提取公因式整理即可.【詳解】2b2a2﹣a3b﹣ab3=ab(2ab-a2-b2)=﹣ab(a﹣b)2,所以答案為﹣ab(a﹣b)2.【點睛】本題考查了因式分解-提公因式法,解題的關鍵是掌握提公因式法的概念.13、1【解析】
根據兩點間的距離公式可求B點坐標,再根據絕對值的性質即可求解.【詳解】∵數軸上不同三點A、B、C對應的數分別為a、b、c,a=-4,AB=3,∴b=3+(-4)=-1,∵|b|=|c|,∴c=1.故答案為1.【點睛】考查了實數與數軸,絕對值,關鍵是根據兩點間的距離公式求得B點坐標.14、1.【解析】
把無理方程轉化為整式方程即可解決問題.【詳解】兩邊平方得到:2x﹣1=1,解得:x=1,經檢驗:x=1是原方程的解.故答案為:1.【點睛】本題考查了無理方程,解題的關鍵是學會用轉化的思想思考問題,注意必須檢驗.15、y2<y1<y2【解析】分析:設t=k2﹣2k+2,配方后可得出t>1,利用反比例函數圖象上點的坐標特征可求出y1、y2、y2的值,比較后即可得出結論.詳解:設t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵點A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函數y=(k為常數)的圖象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案為:y2<y1<y2.點睛:本題考查了反比例函數圖象上點的坐標特征,利用反比例函數圖象上點的坐標特征求出y1、y2、y2的值是解題的關鍵.16、8π【解析】
根據圓錐的側面積=底面周長×母線長÷2公式即可求出.【詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側面積=4π×4÷2=8π.故答案為:8π.【點睛】靈活運用圓的周長公式和扇形面積公式.三、解答題(共8題,共72分)17、(1)詳見解析;(2)2+2;(3)S△BDQx+.【解析】
(1)根據要求利用全等三角形的判定和性質畫出圖形即可.(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.證明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四邊形BMON=S四邊形BEOF=定值,證明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因為l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因為OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,由此即可解決問題.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.證明△PDF≌△QDE(ASA),即可解決問題.【詳解】解:(1)如圖1,作一邊上的中線可分割成2個全等三角形,如圖2,連接外心和各頂點的線段可分割成3個全等三角形,如圖3,連接各邊的中點可分割成4個全等三角形,(2)如圖④中,作OE⊥AB于E,OF⊥BC于F,連接OB.∵△ABC是等邊三角形,O是外心,∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,∴OE=OF,∵∠OEB=∠OFB=90°,∴∠EOF+∠EBF=180°,∴∠EOF=∠NOM=120°,∴∠EOM=∠FON,∴△OEM≌△OFN(ASA),∴EM=FN,ON=OM,S△EOM=S△NOF,∴S四邊形BMON=S四邊形BEOF=定值,∵OB=OB,OE=OF,∠OEB=∠OFB=90°,∴Rt△OBE≌Rt△OBF(HL),∴BE=BF,∴BM+BN=BE+EM+BF﹣FN=2BE=定值,∴欲求最小值,只要求出l的最小值,∵l=BM+BN+ON+OM=定值+ON+OM,欲求最小值,只要求出ON+OM的最小值,∵OM=ON,根據垂線段最短可知,當OM與OE重合時,OM定值最小,此時定值最小,s=×2×=,l=2+2++=4+,∴的最小值==2+2.(3)如圖⑤中,連接AD,作DE⊥AB于E,DF⊥AC于F.∵△ABC是等邊三角形,BD=DC,∴AD平分∠BAC,∵DE⊥AB,DF⊥AC,∴DE=DF,∵∠DEA=∠DEQ=∠AFD=90°,∴∠EAF+∠EDF=180°,∵∠EAF=60°,∴∠EDF=∠PDQ=120°,∴∠PDF=∠QDE,∴△PDF≌△QDE(ASA),∴PF=EQ,在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,∴CF=CD=1,DF=,同法可得:BE=1,DE=DF=,∵AF=AC﹣CF=4﹣1=3,PA=x,∴PF=EQ=3+x,∴BQ=EQ﹣BE=2+x,∴S△BDQ=?BQ?DE=×(2+x)×=x+.【點睛】本題主要考查多邊形的綜合題,主要涉及的知識點:全等三角形的判定和性質、多邊形內角和、角平分線的性質、等量代換、三角形的面積等,牢記并熟練運用這些知識點是解此類綜合題的關鍵。18、(1)見解析;(2)62或3【解析】試題分析:(1)根據平行線的性質和中點的性質證明三角形全等,然后根據對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質,分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積19、(1).理由見解析;(2).【解析】
(1)根據得到∠A=∠PDA,根據線段垂直平分線的性質得到,利用,得到,于是得到結論;
(2)連接PE,設DE=x,則EB=ED=x,CE=8-x,根據勾股定理即可得到結論.【詳解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)連接,設,由(1)得,,又,,∵,∴,∴,解得,即.【點睛】本題考查了線段垂直平分線的性質,直角三角形的性質,勾股定理,正確的作出輔助線解題的關鍵.20、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結果,球球恰在B手中的結果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結果,三次傳球后,球恰在A手中的結果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結果發生的可能性相等,球球恰在B手中的結果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結果有8種,每種結果發生的可能性相等.其中,三次傳球后,球恰在A手中的結果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點:用列舉法求概率.21、(1)二次函數的表達式為:y=x2﹣4x+3;(2)點P的坐標為:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)當點M出發1秒到達D點時,△MNB面積最大,最大面積是1.此時點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【解析】
(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程組,解方程組即可得二次函數的表達式;(2)先求出點B的坐標,再根據勾股定理求得BC的長,當△PBC為等腰三角形時分三種情況進行討論:①CP=CB;②BP=BC;③PB=PC;分別根據這三種情況求出點P的坐標;(3)設AM=t則DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化為頂點式,根據二次函數的性質即可得△MNB最大面積;此時點M在D點,點N在對稱軸上x軸上方2個單位處或點N在對稱軸上x軸下方2個單位處.【詳解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函數的表達式為:y=x2﹣4x+3;(2)令y=0,則x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,點P在y軸上,當△PBC為等腰三角形時分三種情況進行討論:如圖1,①當CP=CB時,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②當PB=PC時,OP=OB=3,∴P3(0,-3);③當BP=BC時,∵OC=OB=3∴此時P與O重合,∴P4(0,0);綜上所述,點P的坐標為:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如圖2,設AM=t,由AB=2,得BM=2﹣t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安徽藝術職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年安徽廣播影視職業技術學院高職單招職業技能測試近5年常考版參考題庫含答案解析
- 2025年安徽交通職業技術學院高職單招職業適應性測試歷年(2019-2024年)真題考點試卷含答案解析
- 2025年天津廣播影視職業學院高職單招職業適應性測試歷年(2019-2024年)真題考點試卷含答案解析
- 混凝土工安全操作規程
- 編程課程體系介紹
- 兒童勞動教育家務闖關簡單家務三步法我是勞動小能手課件
- 廣東省廣州市教研室2025年高三畢業班第六次質量檢查生物試題含解析
- 人教版數學六年級下冊第一單元測試卷含答案
- 山東工程職業技術大學《學術英語(聽說)》2023-2024學年第二學期期末試卷
- 2024-2025學年下學期初中歷史八年級第二單元A卷
- 2024年紹興諸暨市水務集團有限公司招聘考試真題
- 2025年新版供電營業規則考試題庫
- 2025年長白山職業技術學院單招職業技能測試題庫帶答案
- 剪映電腦版課件
- 2025年公務員遴選考試公共基礎知識必考題庫170題及答案(四)
- 2025基礎教育改革綱要
- 2024年內蒙古呼和浩特市中考物理試題【含答案、解析】
- 辦公用品及設備采購產品手冊
- 2025-2030年中國LPG行業市場運行現狀及發展前景分析報告
- 2022-2023學年第二期高一中職數學期中考試模擬測試題
評論
0/150
提交評論