2022年山東省新泰市新甫中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第1頁
2022年山東省新泰市新甫中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第2頁
2022年山東省新泰市新甫中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第3頁
2022年山東省新泰市新甫中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第4頁
2022年山東省新泰市新甫中學(xué)九年級數(shù)學(xué)第一學(xué)期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,用菱形紙片按規(guī)律依次拼成如圖圖案,第個圖案有個菱形紙片,第個圖案有個菱形紙片,第個圖案有個菱形紙片,按此規(guī)律,第個圖案中菱形紙片數(shù)量為()A. B. C. D.2.已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(-1,1),下列結(jié)論:①abc<1;②b2-4ac=1;③a<2;④4a-2b+c>1.其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.43.在下列四個圖形中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.4.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的長為()A.5sinA B.5cosA C.5sinA5.二次函數(shù)y=ax1+bx+c(a≠0)的部分圖象如圖所示,圖象過點(﹣1,0),對稱軸為直線x=1,下列結(jié)論:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<5<x1.其中正確的結(jié)論有()A.1個 B.3個 C.4個 D.5個6.1米長的標桿直立在水平的地面上,它在陽光下的影長為0.8米;在同一時刻,若某電視塔的影長為100米,則此電視塔的高度應(yīng)是()A.80米 B.85米 C.120米 D.125米7.一個三角形的兩邊長分別為和,第三邊長是方程的根,則這個三角形的周長為()A. B. C.10或11 D.不能確定8.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結(jié)論:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個9.如圖,在Rt△ABC中,∠ACB=90°,如果AC=3,AB=5,那么sinB等于()A. B. C. D.10.用圖中兩個可自由轉(zhuǎn)動的轉(zhuǎn)盤做“配紫色”游戲:分別旋轉(zhuǎn)兩個轉(zhuǎn)盤,若其中一個轉(zhuǎn)出紅色,另-個轉(zhuǎn)出藍色即可配成紫色,則可配成紫色的概率是()轉(zhuǎn)盤一轉(zhuǎn)盤二A. B. C. D.11.如圖,等邊△ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60°,則CD的長是()A. B. C. D.12.下列事件是必然事件的是()A.任意購買一張電影票,座號是“7排8號” B.射擊運動員射擊一次,恰好命中靶心C.拋擲一枚圖釘,釘尖觸地 D.13名同學(xué)中,至少2人出生的月份相同二、填空題(每題4分,共24分)13.如圖,在Rt△ABC中,∠ABC=90°,AB=1,BC=,將△ABC繞點頂C順時針旋轉(zhuǎn)60°,得到△MNC,連接BM,則BM的長是_____.14.若點A(-2,a),B(1,b),C(4,c)都在反比例函數(shù)的圖象上,則a、b、c大小關(guān)系是________.15.如圖,中,,,,是上一個動點,以為直徑的⊙交于,則線段長的最小值是_________.16.二次函數(shù)的圖象如圖所示,若點,是圖象上的兩點,則____(填“>”、“<”、“=”).17.已知點P是線段AB的黃金分割點,AP>PB.若AB=1.則AP=__(結(jié)果保留根號).18.在平面直角坐標系中,點P(3,﹣5)關(guān)于原點對稱的點的坐標是_____.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,一次函數(shù)y=mx+n(m≠0)的圖象與y軸交于點C,與反比例函數(shù)y=(k≠0)的圖象交于A,B兩點,點A在第一象限,縱坐標為4,點B在第三象限,BM⊥x軸,垂足為點M,BM=OM=1.(1)求反比例函數(shù)和一次函數(shù)的解析式.(1)連接OB,MC,求四邊形MBOC的面積.20.(8分)如圖,點C在以AB為直徑的圓上,D在線段AB的延長線上,且CA=CD,BC=BD.(1)求證:CD與⊙O相切;(2)若AB=8,求圖中陰影部分的面積.21.(8分)如圖,BC是半圓O的直徑,D是弧AC的中點,四邊形ABCD的對角線AC、BD交于點E.(1)求證:△DCE∽△DBC;(2)若CE=,CD=2,求直徑BC的長.22.(10分)在平面直角坐標系xOy中,拋物線與y軸交于點A.(1)直接寫出點A的坐標;(2)點A、B關(guān)于對稱軸對稱,求點B的坐標;(3)已知點,.若拋物線與線段PQ恰有兩個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.23.(10分)如圖,在中,,.用直尺和圓規(guī)作,使圓心O在BC邊,且經(jīng)過A,B兩點上不寫作法,保留作圖痕跡;連接AO,求證:AO平分.24.(10分)(1)解方程(2)計算25.(12分)關(guān)于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求證:(1)方程總有兩個實數(shù)根;(2)如果方程的兩根相等,求此時方程的根.26.“2020比佛利”無錫馬拉松賽將于3月22日鳴槍開跑,本次比賽設(shè)三個項目:A.全程馬拉松;B.半程馬拉松;C.迷你馬拉松.小明和小紅都報名參與該賽事的志愿者服務(wù)工作,若兩人都已被選中,屆時組委會隨機將他們分配到三個項目組.(1)小明被分配到“迷你馬拉松”項目組的概率為;(2)請利用樹狀圖或列表法求兩人被分配到同一個項目組的概率.

參考答案一、選擇題(每題4分,共48分)1、D【解析】觀察圖形發(fā)現(xiàn):每增加一個圖形,菱形紙片增加4個,從而得到通項公式,代入n=7求解即可.【詳解】觀察圖形發(fā)現(xiàn):第1個圖案中有5=4×1+1個菱形紙片;第2個圖案中有9=4×2+1個菱形紙片;第3個圖形中有13=4×3+1個菱形紙片,…第n個圖形中有4n+1個菱形紙片,當n=7時,4×7+1=29個菱形紙片,故選:D.【點睛】屬于規(guī)律型:圖形的變化類,找出圖中菱形紙片個數(shù)的變化規(guī)律是解題的關(guān)鍵.2、A【分析】根據(jù)拋物線的圖像和表達式分析其系數(shù)的值,通過特殊點的坐標判斷結(jié)論是否正確.【詳解】∵函數(shù)圖象開口向上,∴,又∵頂點為(,1),∴,∴,由拋物線與軸的交點坐標可知:,∴c>1,∴abc>1,故①錯誤;∵拋物線頂點在軸上,∴,即,又,∴,故②錯誤;∵頂點為(,1),∴,∵,∴,∵,∴,則,故③錯誤;由拋物線的對稱性可知與時的函數(shù)值相等,∴,∴,故④正確.綜上,只有④正確,正確個數(shù)為1個.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,根據(jù)二次函數(shù)圖象以及頂點坐標找出之間的關(guān)系是解題的關(guān)鍵.3、A【解析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是中心對稱圖形,也是軸對稱圖形,符合題意;B、是軸對稱圖形,不是中心對稱圖形,不符合題意;C、是軸對稱圖形,不是中心對稱圖形,不符合題意;D、不是軸對稱圖形,是中心對稱圖形,不符合題意.故選A.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、C【解析】根據(jù)三角函數(shù)即可解答.【詳解】解:已知在Rt△ABC中,∠C=90°,BC=5,故BCAB=sinA故AB=5sinA【點睛】本題考查正弦函數(shù),掌握公式是解題關(guān)鍵.5、B【解析】根據(jù)題意和函數(shù)的圖像,可知拋物線的對稱軸為直線x=-=1,即b=-4a,變形為4a+b=0,所以(1)正確;由x=-3時,y>0,可得9a+3b+c>0,可得9a+c>-3c,故(1)正確;因為拋物線與x軸的一個交點為(-1,0)可知a-b+c=0,而由對稱軸知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函數(shù)的圖像開口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正確;根據(jù)圖像可知當x<1時,y隨x增大而增大,當x>1時,y隨x增大而減小,可知若點A(﹣3,y1)、點B(﹣,y1)、點C(7,y3)在該函數(shù)圖象上,則y1=y3<y1,故(4)不正確;根據(jù)函數(shù)的對稱性可知函數(shù)與x軸的另一交點坐標為(5,0),所以若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x1,且x1<x1,則x1<﹣1<x1,故(5)正確.正確的共有3個.故選B.點睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax1+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小,當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置,當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點.

拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定,△=b1﹣4ac>0時,拋物線與x軸有1個交點;△=b1﹣4ac=0時,拋物線與x軸有1個交點;△=b1﹣4ac<0時,拋物線與x軸沒有交點.6、D【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.解:設(shè)電視塔的高度應(yīng)是x,根據(jù)題意得:=,解得:x=125米.故選D.命題立意:考查利用所學(xué)知識解決實際問題的能力.7、B【分析】直接利用因式分解法解方程,進而利用三角形三邊關(guān)系得出答案.【詳解】∵,

∴,

解得:,

∵一個三角形的兩邊長為3和5,

∴第三邊長的取值范圍是:,即,

則第三邊長為:3,

∴這個三角形的周長為:.

故選:B.【點睛】本題主要考查了因式分解法解方程以及三角形三邊關(guān)系,正確掌握三角形三邊關(guān)系是解題關(guān)鍵.8、C【詳解】試題解析:①∵拋物線與x軸有2個交點,∴△=b2﹣4ac>0,所以①錯誤;②∵拋物線開口向上,∴a>0,∵拋物線的對稱軸在y軸的左側(cè),∴a、b同號,∴b>0,∵拋物線與y軸交點在x軸上方,∴c>0,∴abc>0,所以②正確;③∵x=﹣1時,y<0,即a﹣b+c<0,∵對稱軸為直線x=﹣1,∴,∴b=2a,∴a﹣2a+c<0,即a>c,所以③正確;④∵拋物線的對稱軸為直線x=﹣1,∴x=﹣2和x=0時的函數(shù)值相等,即x=﹣2時,y>0,∴4a﹣2b+c>0,所以④正確.所以本題正確的有:②③④,三個,故選C.9、A【解析】直接利用銳角三角函數(shù)關(guān)系得出sinB的值.【詳解】∵在Rt△ABC中,∠ACB=90°,AC=3,AB=5,∴sinB=故選A.【點睛】此題主要考查了銳角三角函數(shù)關(guān)系,正確把握定義是解題關(guān)鍵.10、B【分析】將轉(zhuǎn)盤一平均分成3份,即將轉(zhuǎn)盤一標“藍”的部分平均分成兩部分,分別記為藍、藍,再利用列表法列出所有等可能事件,根據(jù)題意求概率即可.【詳解】解:將轉(zhuǎn)盤一標“藍”的部分平均分成兩部分,分別記為藍、藍,即轉(zhuǎn)盤-平均分成三等份,列表如下:紅紅藍黃紅(紅,紅)(紅,紅)(紅,藍)(紅,黃)藍(藍,紅)(藍,紅)(藍,藍)(藍,黃)藍(藍,紅)(藍,紅)(藍,藍)(藍,黃)由表格可知,共有12種等可能的結(jié)果,其中能配成紫色的結(jié)果有5種,所以可配成紫色的概率是.故選B.【點睛】本題考查了概率,用列表法求概率時,必須是等可能事件,這是本題的易錯點,熟練掌握列表法是解題的關(guān)鍵.11、C【分析】根據(jù)相似三角形的判定定理求出△ABP∽△PCD,再根據(jù)相似三角形對應(yīng)邊的比等于相似比的平方解答.【詳解】∵△ABC為等邊三角形,∴∠B=∠C=60°,又∵∠APD+∠DPC=∠B+∠BAP,且∠APD=60°,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∵AB=BC=3,BP=1,∴PC=2,∴,∴CD=,故選C.【點睛】本題考查了等邊三角形的性質(zhì),相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.12、D【分析】根據(jù)必然事件的定義即可得出答案.【詳解】ABC均為隨機事件,D是必然事件,故答案選擇D.【點睛】本題考查的是必然事件的定義:一定會發(fā)生的事情.二、填空題(每題4分,共24分)13、【分析】由旋轉(zhuǎn)的性質(zhì)得:CA=CM,∠ACM=60°,由三角比可以求出∠ACB=30°,從而∠BCM=90°,然后根據(jù)勾股定理求解即可.【詳解】解:由旋轉(zhuǎn)的性質(zhì)得:CA=CM,∠ACM=60°,∵∠ABC=90°,AB=1,BC=,∴tan∠ACB=,CM=AC=,∴∠ACB=30°,∴∠BCM=90°,∴BM==.故答案為:.【點睛】本題考查了圖形的變換-旋轉(zhuǎn),銳角三角函數(shù),以及勾股定理等知識,準確把握旋轉(zhuǎn)的性質(zhì)是解題的關(guān)鍵.14、a>c>b【分析】根據(jù)題意,分別求出a、b、c的值,然后進行判斷,即可得到答案.【詳解】解:∵點A、B、C都在反比例函數(shù)的圖象上,則當時,則;當時,則;當時,則;∴;故答案為:.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.15、【分析】連接AE,可得∠AED=∠BEA=90°,從而知點E在以AB為直徑的⊙Q上,繼而知點Q、E、C三點共線時CE最小,根據(jù)勾股定理求得QC的長,即可得線段CE的最小值.【詳解】解:如圖,連接AE,則∠AED=∠BEA=90°(直徑所對的圓周角等于90°),

∴點E在以AB為直徑的⊙Q上,

∵AB=4,

∴QA=QB=2,

當點Q、E、C三點共線時,QE+CE=CQ(最短),

而QE長度不變?yōu)?,故此時CE最小,

∵AC=5,

∴,

故答案為:.【點睛】本題考查了圓周角定理和勾股定理的綜合應(yīng)用,解決本題的關(guān)鍵是確定E點運動的軌跡,從而把問題轉(zhuǎn)化為圓外一點到圓上一點的最短距離問題.16、>【分析】利用函數(shù)圖象可判斷點,都在對稱軸右側(cè)的拋物線上,然后根據(jù)二次函數(shù)的性質(zhì)可判斷與的大小.【詳解】解:∵拋物線的對稱軸在y軸的左側(cè),且開口向下,∴點,都在對稱軸右側(cè)的拋物線上,∴>.故答案為>.【點睛】本題考查二次函數(shù)圖象上點的坐標特征,二次函數(shù)的性質(zhì).解決本題的關(guān)鍵是判斷點A和點B都在對稱軸的右側(cè).17、5﹣5【分析】根據(jù)黃金分割比的定義計算即可.【詳解】根據(jù)黃金分割比,有故答案為:.【點睛】本題主要考查黃金分割比,掌握黃金分割比的定義是解題的關(guān)鍵.18、(﹣3,5)【分析】根據(jù)兩個點關(guān)于原點對稱時,它們的坐標符號相反,即可得答案.【詳解】點P(3,﹣5)關(guān)于原點對稱的點的坐標是(﹣3,5),故答案為:(﹣3,5).【點睛】本題主要考查平面直角坐標系中,關(guān)于原點的兩個點的坐標變化規(guī)律,掌握兩個點關(guān)于原點對稱時,它們的坐標符號相反,是解題的關(guān)鍵.三、解答題(共78分)19、(1)y=,y=1x+1;(1)四邊形MBOC的面積是2.【分析】(1)根據(jù)題意可以求得點B的坐標,從而可以求得反比例函數(shù)的解析式,進而求得點A的坐標,從而可以求得一次函數(shù)的解析式;(1)根據(jù)(1)中的函數(shù)解析式可以求得點C,從而可以求得四邊形MBOC是平行四邊形,根據(jù)面積公式即可求得.【詳解】解:(1)∵BM=OM=1,∴點B的坐標為(﹣1,﹣1),∵反比例函數(shù)y=(k≠0)的圖象經(jīng)過點B,則﹣1=,得k=2,∴反比例函數(shù)的解析式為y=,∵點A的縱坐標是2,∴2=,得x=1,∴點A的坐標為(1,2),∵一次函數(shù)y=mx+n(m≠0)的圖象過點A(1,2)、點B(﹣1,﹣1),∴,解得,即一次函數(shù)的解析式為y=1x+1;(1)∵y=1x+1與y軸交于點C,∴點C的坐標為(0,1),∵點B(﹣1,﹣1),點M(﹣1,0),∴OC=MB=1,∵BM⊥x軸,∴MB∥OC,∴四邊形MBOC是平行四邊形,∴四邊形MBOC的面積是:OM?OC=2.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用一次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)解答.20、(1)見解析;(2)【分析】(1)連接OC,由圓周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性質(zhì)得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,證出∠DCO=90°,則CD⊥OC,即可得出結(jié)論;

(2)證明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性質(zhì)得出CD=OC=4,圖中陰影部分的面積=△OCD的面積-扇形OBC的面積,代入數(shù)據(jù)計算即可.【詳解】證明:連接OC,如圖所示:

∵AB是⊙O的直徑,

∴∠ACB=90°,即∠ACO+∠BCO=90°,

∵CA=CD,BC=BD,

∴∠A=∠D=∠BCD,

又∵OA=OC,

∴∠ACO=∠A,

∴∠ACO=∠BCD,

∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,

∴CD⊥OC,

∵OC是⊙O的半徑,

∴CD與⊙O相切;

(2)解:∵AB=8,

∴OC=OB=4,

由(1)得:∠A=∠D=∠BCD,

∴∠OBC=∠BCD+∠D=2∠D,

∵∠BOC=2∠A,

∴∠BOC=∠OBC,

∴OC=BC,

∵OB=OC,

∴OB=OC=BC,

∴∠BOC=60°,

∵∠OCD=90°,

∴∠D=90°-60°=30°,

∴CD=OC=4,

∴圖中陰影部分的面積=△OCD的面積-扇形OBC的面積=×4×4-=8-π.【點睛】本題考查了切線的判定、圓周角定理、等腰三角形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)、含30°角的直角三角形的性質(zhì)、扇形面積公式、三角形面積公式等知識;熟練掌握切線的判定和圓周角定理是解題的關(guān)鍵.21、(1)見解析;(2)2【分析】(1)由等弧所對的圓周角相等可得∠ACD=∠DBC,且∠BDC=∠EDC,可證△DCE∽△DBC;(2)由勾股定理可求DE=1,由相似三角形的性質(zhì)可求BC的長.【詳解】(1)∵D是弧AC的中點,∴,∴∠ACD=∠DBC,且∠BDC=∠EDC,∴△DCE∽△DBC;(2)∵BC是直徑,∴∠BDC=90°,∴DE1.∵△DCE∽△DBC,∴,∴,∴BC=2.【點睛】本題考查了圓周角定理、相似三角形的判定和性質(zhì)、勾股定理等知識,證明△DCE∽△DBC是解答本題的關(guān)鍵.22、(1)(0,-3);(2)B(2,-3);(3)或【分析】(1)題干要求直接寫出點A的坐標,將x=0代入即可求出;(2)由題意知點A、B關(guān)于對稱軸對稱,求出對稱軸從而即可求點B的坐標;(3)結(jié)合函數(shù)圖象,拋物線與線段PQ恰有兩個公共點,分別對有兩個公共點的情況進行討論求解.【詳解】解:(1)由題意拋物線與y軸交于點A,將x=0代入求出坐標為;(2)∵;∴.(3)當拋物線過點P(4,0)時,,∴.此時,拋物線與線段PQ有兩個公共點.當拋物線過點時,a=1,此時,拋物線與線段PQ有兩個公共點.∵拋物線與線段PQ恰有兩個公共點,∴.當拋物線開口向下時,.綜上所述,當或時,拋物線與線段PQ恰有兩個公共點.【點睛】本題考查二次函數(shù)圖像相關(guān)性質(zhì),熟練掌握二次函數(shù)圖像相關(guān)性質(zhì)是解題的關(guān)鍵.23、(1)作圖見解析;(2)證明見解析.【分析】(1)作線段AB的垂直平分線即可,線段AB的垂直平分與BC的交點即是圓心O;(2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論