2023屆廣東省深圳市寶安第一外國語中學(xué)九年級數(shù)學(xué)上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2023屆廣東省深圳市寶安第一外國語中學(xué)九年級數(shù)學(xué)上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2023屆廣東省深圳市寶安第一外國語中學(xué)九年級數(shù)學(xué)上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2023屆廣東省深圳市寶安第一外國語中學(xué)九年級數(shù)學(xué)上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2023屆廣東省深圳市寶安第一外國語中學(xué)九年級數(shù)學(xué)上冊期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列二次函數(shù)中,頂點坐標為(-5,0),且開口方向、形狀與y=-x2的圖象相同的是()A.y=(x-5)2 B.y=x2-5 C.y=-(x+5)2 D.y=(x+5)22.用一塊長40cm,寬28cm的矩形鐵皮,在四個角截去四個全等的正方形后,折成一個無蓋的長方形盒子,若折成的長方體的底面積為,設(shè)小正方形的邊長為xcm,則列方程得()A.(20﹣x)(14﹣x)=360 B.(40﹣2x)(28﹣2x)=360C.40×28﹣4x2=360 D.(40﹣x)(28﹣x)=3603.下列函數(shù)屬于二次函數(shù)的是A. B.C. D.4.點A(1,y1)、B(3,y2)是反比例函數(shù)y=圖象上的兩點,則y1、y2的大小關(guān)系是()A.y1>y2 B.y1=y(tǒng)2 C.y1<y2 D.不能確定5.用配方法解方程時,可將方程變形為()A. B. C. D.6.已知關(guān)于x的一元二次方程有實數(shù)根,則m的取值范圍是()A.m≥2 B.m≤5 C.m>2 D.m<57.如圖,在中,平分于.如果,那么等于()A. B. C. D.8.如圖,矩形的中心為直角坐標系的原點,各邊分別與坐標軸平行,其中一邊交軸于點,交反比例函數(shù)圖像于點,且點是的中點,已知圖中陰影部分的面積為,則該反比例函數(shù)的表達式是()A. B. C. D.9.某種工件是由一個長方體鋼塊中間鉆了一個上下通透的圓孔制作而成,其俯視圖如圖所示,則此工件的左視圖是(

)A. B. C. D.10.如圖,⊙O是△ABC的外接圓,已知∠ABO=50°,則∠ACB的大小為()A.30° B.40° C.45° D.50°11.x1,x2是關(guān)于x的一元二次方程x2-mx+m-2=0的兩個實數(shù)根,是否存在實數(shù)m使=0成立?則正確的結(jié)論是()A.m=0時成立 B.m=2時成立 C.m=0或2時成立 D.不存在12.下列說法正確的是()A.一組對邊相等且有一個角是直角的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線相等且互相垂直的四邊形是正方形D.對角線平分一組對角的平行四邊形是菱形二、填空題(每題4分,共24分)13.如圖,為矩形對角線,的交點,AB=6,M,N是直線BC上的動點,且,則的最小值是_.14.已知線段a=4,b=9,則a,b的比例中項線段長等于________.15.如圖,拋物線與軸交于兩點,是以點為圓心,2為半徑的圓上的動點,是線段的中點,連結(jié).則線段的最大值是________.16.如圖,P1是反比例函數(shù)(k>0)在第一象限圖象上的一點,點A1的坐標為(2,0).若△P1OA1與△P2A1A2均為等邊三角形,則A2點的坐標為_____.17.已知二次函數(shù)y=x2﹣4x+3,當a≤x≤a+5時,函數(shù)y的最小值為﹣1,則a的取值范圍是_______.18.在平面坐標系中,第1個正方形的位置如圖所示,點的坐標為,點的坐標為,延長交軸于點,作第2個正方形,延長交軸于點;作第3個正方形,…按這樣的規(guī)律進行下去,第5個正方形的邊長為__________.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(-2,3),B(-4,1),C(-1,2).(1)畫出以點O為旋轉(zhuǎn)中心,將△ABC順時針旋轉(zhuǎn)90°得到△A'B'C'(2)求點C在旋轉(zhuǎn)過程中所經(jīng)過的路徑的長.20.(8分)某商場“六一”期間進行一個有獎銷售的活動,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),并規(guī)定:顧客購物100元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品(若指針落在兩個區(qū)域的交界處,則重新轉(zhuǎn)動轉(zhuǎn)盤).下表是此次促銷活動中的一組統(tǒng)計數(shù)據(jù):轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n1002004005008001000落在“可樂”區(qū)域的次數(shù)m60122240298604落在“可樂”區(qū)域的頻率0.60.610.60.590.604(1)計算并完成上述表格;(2)請估計當n很大時,頻率將會接近__________;假如你去轉(zhuǎn)動該轉(zhuǎn)盤一次,你獲得“可樂”的概率約是__________;(結(jié)果精確到0.1)(3)在該轉(zhuǎn)盤中,表示“車模”區(qū)域的扇形的圓心角約是多少度?21.(8分)解方程:4x2﹣8x+3=1.22.(10分)一次函數(shù)y=k1x+b和反比例函數(shù)的圖象相交于點P(m?1,n+1),點Q(0,a)在函數(shù)y=k1x+b的圖象上,且m,n是關(guān)于x的方程ax2?(3a+1)x+2(a+1)=0的兩個不相等的整數(shù)根(其中a為整數(shù)),求一次函數(shù)和反比例函數(shù)的解析式.23.(10分)如圖,在中,,的中點.(1)求證:三點在以為圓心的圓上;(2)若,求證:四點在以為圓心的圓上.24.(10分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.25.(12分)定義:如果一個四邊形的一組對角互余,那么我們稱這個四邊形為“對角互余四邊形”.(1)如圖①,在對角互余四邊形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,則四邊形ABCD的面積為;(2)如圖②,在對角互余四邊形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四邊形ABCD的面積;(3)如圖③,在△ABC中,BC=2AB,∠ABC=60°,以AC為邊在△ABC異側(cè)作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面積.26.如圖,在電線桿上的點處引同樣長度的拉線,固定電線桿,在離電線桿6米處安置測角儀(其中點、、、在同一條直線上),在處測得電線桿上點處的仰角為,測角儀的高為米.(1)求電線桿上點離地面的距離;(2)若拉線,的長度之和為18米,求固定點和之間的距離.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)二次函數(shù)的頂點式:y=a(x-m)2+k,即可得到答案.【詳解】頂點坐標為(-5,0),且開口方向、形狀與y=-x2的圖象相同的二次函數(shù)解析式為:y=-(x+5)2,故選:C.【點睛】本題主要考查二次函數(shù)的頂點式,掌握二次函數(shù)的頂點式y(tǒng)=a(x-m)2+k,其中(m,k)是頂點坐標,是解題的關(guān)鍵.2、B【分析】由題意設(shè)剪掉的正方形的邊長為xcm,根據(jù)長方體的底面積為列出方程即可.【詳解】解:設(shè)剪掉的正方形的邊長為xcm,則(28﹣2x)(40﹣2x)=1.故選:B.【點睛】本題考查一元二次方程的應(yīng)用,解答本題的關(guān)鍵是仔細審題并建立方程.3、A【分析】一般地,我們把形如y=ax2+bx+c(其中a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).【詳解】由二次函數(shù)的定義可知A選項正確,B和D選項為一次函數(shù),C選項為反比例函數(shù).【點睛】了解二次函數(shù)的定義是解題的關(guān)鍵.4、A【解析】∵反比例函數(shù)y=中的9>0,∴經(jīng)過第一、三象限,且在每一象限內(nèi)y隨x的增大而減小,又∵A(1,y?)、B(3,y?)都位于第一象限,且1<3,∴y?>y?,故選A.5、D【分析】配方法一般步驟:將常數(shù)項移到等號右側(cè),左右兩邊同時加一次項系數(shù)一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關(guān)鍵.6、B【分析】根據(jù)一元二次方程根的情況即可列出不等式,從而求出m的取值范圍.【詳解】解:∵關(guān)于x的一元二次方程有實數(shù)根,∴b2﹣4ac=1﹣4()≥0,解得:m≤5故選:B.【點睛】此題考查的是根據(jù)一元二次方程根的情況,求參數(shù)的取值范圍,掌握一元二次方程根的情況與△的關(guān)系是解決此題的關(guān)鍵.7、D【分析】先根據(jù)直角三角形的性質(zhì)和角平分線的性質(zhì)可得,再根據(jù)等邊對等角可得,最后在中,利用直角三角形的性質(zhì)即可得.【詳解】平分則在中,故選:D.【點睛】本題考查了等腰三角形的性質(zhì)、角平分線的性質(zhì)、直角三角形的性質(zhì):(1)兩銳角互余;(2)所對的直角邊等于斜邊的一半;根據(jù)等腰三角形的性質(zhì)得出是解題關(guān)鍵.8、B【分析】根據(jù)反比例函數(shù)的對稱性以及已知條件,可得矩形的面積是8,設(shè),則,根據(jù),可得,再根據(jù)反比例函數(shù)系數(shù)的幾何意義即可求出該反比例函數(shù)的表達式.【詳解】∵矩形的中心為直角坐標系的原點O,反比例函數(shù)的圖象是關(guān)于原點對稱的中心對稱圖形,且圖中陰影部分的面積為8,

∴矩形的面積是8,

設(shè),則,

∵點P是AC的中點,

∴,

設(shè)反比例函數(shù)的解析式為,

∵反比例函數(shù)圖象于點P,

∴,

∴反比例函數(shù)的解析式為.

故選:B.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)系數(shù)的幾何意義,得出矩形的面積是8是解題的關(guān)鍵.9、A【解析】從左面看應(yīng)是一長方形,看不到的應(yīng)用虛線,由俯視圖可知,虛線離邊較近,故選A.10、B【解析】試題解析:在中,故選B.11、A【解析】∵x1,x2是關(guān)于x的一元二次方程x2-bx+b-2=0的兩個實數(shù)根∴Δ=(b-2)2+4>0x1+x2=b,x1×x2=b-2∴使+=0,則故滿足條件的b的值為0故選A.12、D【分析】根據(jù)矩形、正方形、菱形的判定方法一一判斷即可;【詳解】A、一組對邊相等且有一個角是直角的四邊形不一定是矩形,故本選項不符合題意;B、對角線互相垂直的四邊形不一定是菱形,故本選項不符合題意;C、對角線相等且互相垂直的四邊形不一定是正方形,故本選項不符合題意;D、對角線平分一組對角的平行四邊形是菱形,正確.故選:D.【點睛】本題考查矩形、正方形、菱形的判定方法,屬于中考常考題型.二、填空題(每題4分,共24分)13、2【分析】根據(jù)題意找到M與N的位置,再根據(jù)勾股定理求出OM,ON的長即可解題.【詳解】解:過點O作OE⊥BC于E,由題可知當E為MN的中點時,此時OM+ON有最小值,∵AB=6,∴PE=3,(中位線性質(zhì))∵MN=2,即ME=NE=1,∴OM=ON=,(勾股定理)∴OM+ON的最小值=2【點睛】本題考查了圖形的運動,中位線和勾股定理,找到M與N的位置是解題關(guān)鍵.14、1【分析】根據(jù)比例中項的定義,列出比例式即可求解.【詳解】解:根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積,

∴,即,解得,(不合題意,舍去)

故答案為:1.【點睛】此題考查了比例線段;理解比例中項的概念,注意線段不能是負數(shù).15、3.1【分析】連接BP,如圖,先解方程=0得A(?4,0),B(4,0),再判斷OQ為△ABP的中位線得到OQ=BP,利用點與圓的位置關(guān)系,BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,然后計算出BP′即可得到線段OQ的最大值.【詳解】連接BP,如圖,當y=0時,=0,解得x1=4,x2=?4,則A(?4,0),B(4,0),∵Q是線段PA的中點,∴OQ為△ABP的中位線,∴OQ=BP,當BP最大時,OQ最大,而BP過圓心C時,PB最大,如圖,點P運動到P′位置時,BP最大,∵BC=∴BP′=1+2=7,∴線段OQ的最大值是3.1,故答案為:3.1.【點睛】本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.也考查了三角形中位線.16、(2,0)【分析】由于△P1OA1為等邊三角形,作P1C⊥OA1,垂足為C,由等邊三角形的性質(zhì)及勾股定理可求出點P1的坐標,根據(jù)點P1是反比例函數(shù)y=(k>0)圖象上的一點,利用待定系數(shù)法求出此反比例函數(shù)的解析式;作P2D⊥A1A2,垂足為D.設(shè)A1D=a,由于△P2A1A2為等邊三角形,由等邊三角形的性質(zhì)及勾股定理,可用含a的代數(shù)式分別表示點P2的橫、縱坐標,再代入反比例函數(shù)的解析式中,求出a的值,進而得出A2點的坐標.【詳解】作P1C⊥OA1,垂足為C,∵△P1OA1為邊長是2的等邊三角形,∴OC=1,P1C=2×=,∴P1(1,).代入y=,得k=,所以反比例函數(shù)的解析式為y=.作P2D⊥A1A2,垂足為D.設(shè)A1D=a,則OD=2+a,P2D=a,∴P2(2+a,a).∵P2(2+a,a)在反比例函數(shù)的圖象上,∴代入y=,得(2+a)?a=,化簡得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以點A2的坐標為(2,0).故答案為:(2,0).【點睛】此題綜合考查了反比例函數(shù)的性質(zhì),利用待定系數(shù)法求函數(shù)的解析式,正三角形的性質(zhì)等多個知識點.此題難度稍大,綜合性比較強,注意對各個知識點的靈活應(yīng)用.17、﹣3≤a≤1【分析】求得對稱軸,然后分三種情況討論即可求得.【詳解】解:∵二次函數(shù)y=x1﹣4x+3=(x﹣1)1﹣1,∴對稱軸為直線x=1,當a<1<a+5時,則在a≤x≤a+5范圍內(nèi),x=1時有最小值﹣1,當a≥1時,則在a≤x≤a+5范圍內(nèi),x=a時有最小值﹣1,∴a1﹣4a+3=﹣1,解得a=1,當a+5≤1時,則在a≤x≤a+5范圍內(nèi),x=a+5時有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a=﹣3,∴a的取值范圍是﹣3≤a≤1,故答案為:﹣3≤a≤1.【點睛】本題考查了二次函數(shù)的最值,熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.18、【分析】先求出第一個正方形ABCD的邊長,再利用△OAD∽△BA1A求出第一個正方形的邊長,再求第三個正方形邊長,得出規(guī)律可求出第5個正方形的邊長.【詳解】∵點的坐標為,點的坐標為∴OA=3,OD=4,∴∵∠DAB=90°∴∠DAO+∠BAA1=90°,又∵∠DAO+∠ODA=90°,∴∠ODA=∠BAA1∴△OAD∽△BA1A∴即∴∴同理可求得得出規(guī)律,第n個正方形的邊長為∴第5個正方形的邊長為.【點睛】本題考查正方形的性質(zhì),相似三角形的判定和性質(zhì),勾股定理的運用,此題的關(guān)鍵是根據(jù)計算的結(jié)果得出規(guī)律.三、解答題(共78分)19、(1)見解析;(2)【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點O順時針旋轉(zhuǎn)90°后的對應(yīng)點的位置,然后順次連接即可.(2)在旋轉(zhuǎn)過程中,C所經(jīng)過的路程為下圖中扇形的弧長,即利用扇形弧長公式計算即可.【詳解】(1)如圖,連接OA、OB、OC并點O為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到A'、B'、C',連接A'B'、B'C'、A'C',△A'B'C'就是所求的三角形.(2)C在旋轉(zhuǎn)過程中所經(jīng)過的路程為扇形的弧長;所以【點睛】本題考查了旋轉(zhuǎn)作圖以及扇形的弧長公式的計算,作出正確的圖形是解本題的關(guān)鍵.20、(1)472,0.596;(2)0.6,0.6;(3)144°.【解析】試題分析:在同樣條件下,做大量的重復(fù)試驗,利用一個隨機事件發(fā)生的頻率逐漸穩(wěn)定到某個常數(shù),可以估計這個事件發(fā)生的概率,(1)當試驗的可能結(jié)果不是有限個,或各種結(jié)果發(fā)生的可能性不相等時,一般用統(tǒng)計頻率的方法來估計概率,(2)利用頻率估計概率的數(shù)學(xué)依據(jù)是大數(shù)定律:當試驗次數(shù)很大時,隨機事件A出現(xiàn)的頻率,穩(wěn)定地在某個數(shù)值P附近擺動.這個穩(wěn)定值P,叫做隨機事件A的概率,并記為P(A)=P,(3)利用頻率估計出的概率是近似值.試題解析:(1)如下表:轉(zhuǎn)動轉(zhuǎn)盤的次數(shù)n1002004005008001000落在“可樂”區(qū)域的次數(shù)m60122240298472604落在“可樂”區(qū)域的頻率0.60.610.60.5960.590.604(2)0.6;0.6(3)由(2)可知落在“車模”區(qū)域的概率約是0.4,從而得到圓心角的度數(shù)約是360°×0.4=144°.21、【解析】方程左邊分解因式后,利用兩數(shù)相乘積為1,兩因式中至少有一個為1轉(zhuǎn)化為兩個一元一次方程來求解.【詳解】分解因式得:(2x-3)(2x-1)=1,可得2x-3=1或2x-1=1,解得:x1=,x2=.【點睛】此題考查了解一元二次方程-因式分解法,熟練掌握因式分解的方法是解本題的關(guān)鍵.22、一次函數(shù):或;反比例函數(shù):或【分析】根據(jù)點Q在一次函數(shù)上,可得a與b的關(guān)系,解一元二次方程,可解得,,然后根據(jù)方程的兩根不等且為整數(shù),可得出的值,從而得出P的坐標,代入可得解析式.【詳解】∵點Q(0,a)在函數(shù)y=k1x+b的圖象上∴代入得:a=bax2?(3a+1)x+2(a+1)=0化簡得:[ax-(a+1)](x-2)=0∴,∵方程的2個根都是整數(shù)∴a=1時,;a=-1時,∵方程的2個根不相等∴,情況一:m=2,n=0則P(1,1)則一次函數(shù)為:y=2x-1,反比例函數(shù)為:情況二:m=0,n=2則P(-1,3)則一次函數(shù)為:y=-4x-1,反比例函數(shù)為:【點睛】本題考查求一元二次方程的整數(shù)解,解題關(guān)鍵是根據(jù)2個根為整數(shù)且不等分析得出方程的2個根的數(shù)值.23、(1)見解析;(2)見解析【分析】(1)連結(jié)OC,利用直角三角形斜邊中線等于斜邊一半可得OA=OB=OC,所以A,B,C三點在以O(shè)為圓心,OA長為半徑的圓上;(2)連結(jié)OD,可得OA=OB=OC=OD,所以A,B,C,D四點在以O(shè)為圓心,OA長為半徑的圓上.【詳解】(1)連結(jié)OC,在中,,的中點,∴OC=OA=OB,∴三點在以為圓心的圓上;(2)連結(jié)OD,∵,∴OA=OB=OC=OD,∴四點在以為圓心的圓上.【點睛】此題考查了圓的定義:到定點的距離等于定長的點都在同一個圓上,所以證明幾個點共圓,只需要證明這幾個點到某個定點的距離相等即可.24、(1)證明見解析;(2)15.【解析】(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.

(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結(jié)OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結(jié)CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設(shè)BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=.【點睛】考查切線的性質(zhì)、勾股定理、等腰三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是靈活綜合運用所學(xué)知識解決問題.25、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三邊的特殊關(guān)系以及勾股定理,就可以解決問題;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.這樣可以求∠DCE=90°,則可以得到DE的長,進而把四邊形ABCD的面積轉(zhuǎn)化為△BCD和△BCE的面積之和,△BDE和△CDE的面積容易算出來,則四邊形ABCD面積可求;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,則BE=CE=BC,證出△ABE是等邊三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,證出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,設(shè)AB=x,則AC=x,由直角三角形的性質(zhì)得出CF=3,從而DF=3,設(shè)CG=a,AF=y,證明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,進而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面積即可得出答案.【詳解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵對角互余四邊形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=?AC?BC=××1=,S△ACD═?AC?AD=××3=,∴S四邊形ABCD=S△ABC+S△ACD=2,故答案為:2;(2)將△BAD繞點B順時針旋轉(zhuǎn)到△BCE,如圖②所示:則△BCE≌△BAD,連接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四邊形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根據(jù)勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=?BH?DE=×12×10=60,S△CED=?CD?CE=×6×8=24,∵△BCE≌△BAD,∴S四邊形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中點E,連接AE,作CF⊥AD于F,DG⊥BC于G,如圖③所示:則BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°/r

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論