




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣22.用配方法解方程x2﹣2x﹣5=0時,原方程應變形為()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=93.一元二次方程的兩個根為,則的值是()A.10 B.9 C.8 D.74.如圖,已知在中,,于,則下列結論錯誤的是()A. B. C. D.5.反比例函數(shù)y=的圖象與直線y=﹣x+2有兩個交點,且兩交點橫坐標的積為負數(shù),則t的取值范圍是()A.t< B.t> C.t≤ D.t≥6.如圖,是等邊三角形,且與軸重合,點是反比例函數(shù)的圖象上的點,則的周長為()A. B. C. D.7.如圖,AB是⊙O的弦,OC⊥AB于點H,若∠AOC=60°,OH=1,則弦AB的長為()A.2 B. C.2 D.48.已知⊙O的半徑為5,若PO=4,則點P與⊙O的位置關系是()A.點P在⊙O內 B.點P在⊙O上 C.點P在⊙O外 D.無法判斷9.點點同學對數(shù)據(jù)25,43,28,2□,43,36,52進行統(tǒng)計分析,發(fā)現(xiàn)其中一個兩位數(shù)的個位數(shù)被墨水涂污看不到了,則計算結果與涂污數(shù)字無關的是()A.平均數(shù) B.中位數(shù) C.方差 D.眾數(shù)10.拋物線y=(x+2)2-3的對稱軸是(
)A.直線x=2 B.直線x=-2 C.直線x=-3 D.直線x=311.下列命題正確的是()A.有意義的取值范圍是.B.一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)波動性越大.C.若,則的補角為.D.布袋中有除顏色以外完全相同的個黃球和個白球,從布袋中隨機摸出一個球是白球的概率為12.下列式子中表示是的反比例函數(shù)的是()A. B. C. D.二、填空題(每題4分,共24分)13.若,均為銳角,且滿足,則__________.14.如圖,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于點D,O是BC上一點,經(jīng)過C、D兩點的⊙O分別交AC、BC于點E、F,AD=,∠ADC=60°,則劣弧的長為_____.15.一個不透明的布袋里裝有100個只有顏色不同的球,這100個球中有m個紅球通過大量重復試驗后發(fā)現(xiàn),從布袋中隨機摸出一個球摸到紅球的頻率穩(wěn)定在左右,則m的值約為______.16.如圖所示,平面上七個點,,,,,,,圖中所有的連線長均相等,則______.17.從地面豎直向上拋出一小球,小球離地面的高度h(米)與小球運動時間t(秒)之間關系是h=30t﹣5t2(0≤t≤6),則小球從拋出后運動4秒共運動的路徑長是________米.18.已知點是線段的一個黃金分割點,且,,那么__________.三、解答題(共78分)19.(8分)已知拋物線的頂點為,且過點.直線與軸相交于點.(1)求該拋物線的解析式;(2)以線段為直徑的圓與射線相交于點,求點的坐標.20.(8分)如圖,在中,,是邊上的高,是邊上的一個動點(不與,重合),,,垂足分別為,.(1)求證:;(2)與是否垂直?若垂直,請給出證明,若不垂直,請說明理由.21.(8分)中國古賢常說萬物皆自然,而古希臘學者說萬物皆數(shù).同學們還記得我們最初接觸的數(shù)就是“自然數(shù)”吧!在數(shù)的學習過程中,我們會對其中一些具有某種特性的自然數(shù)進行研究,我們研究了奇數(shù)、偶數(shù)、質數(shù)、合數(shù)等.現(xiàn)在我們來研究另一種特珠的自然數(shù)—“喜數(shù)”.定義:對于一個兩位自然數(shù),如果它的個位和十位上的數(shù)字均不為零,且它正好等于其個位和十位上的數(shù)字的和的倍(為正整數(shù)),我們就說這個自然數(shù)是一個“喜數(shù)”.例如:24就是一個“4喜數(shù)”,因為25就不是一個“喜數(shù)”因為(1)判斷44和72是否是“喜數(shù)”?請說明理由;(2)試討論是否存在“7喜數(shù)”若存在請寫出來,若不存在請說明理由.22.(10分)如圖,∠1=∠3,∠B=∠D,AB=DE=5,BC=1.(1)請證明△ABC∽△ADE.(2)求AD的長.23.(10分)如圖,在矩形ABCD中,AB=10cm,BC=20cm,兩只小蟲P和Q同時分別從A、B出發(fā)沿AB、BC向終點B、C方向前進,小蟲P每秒走1cm,小蟲Q每秒走2cm。請問:它們同時出發(fā)多少秒時,以P、B、Q為頂點的三角形與以A、B、C為頂點的三角形相似?24.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側,其他條件不變;①請直接寫出CF,BC,CD三條線段之間的關系;②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.25.(12分)如圖,在平面直角坐標系中,點的坐標分別是,.(1)將繞點逆時針旋轉得到,點,對應點分別是,,請在圖中畫出,并寫出,的坐標;(2)以點為位似中心,將作位似變換且縮小為原來的,在網(wǎng)格內畫出一個符合條件的.26.2018年非洲豬瘟疫情暴發(fā)后,專家預測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.月份x…3456…售價y1/元…12141618…(1)求y1與x之間的函數(shù)關系式.(2)求y2與x之間的函數(shù)關系式.(3)設銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?
參考答案一、選擇題(每題4分,共48分)1、D【解析】x2=4,x=±2.故選D.點睛:本題利用方程左右兩邊直接開平方求解.2、C【分析】配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:由原方程移項,得x2﹣2x=5,方程的兩邊同時加上一次項系數(shù)﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故選:C.【點睛】此題考查利用配方法將一元二次方程變形,熟練掌握配方法的一般步驟是解題的關鍵.3、D【分析】利用方程根的定義可求得,再利用根與系數(shù)的關系即可求解.【詳解】為一元二次方程的根,,.根據(jù)題意得,,.故選:D.【點睛】本題主要考查了一元二次方程的解,根與系數(shù)的關系以及求代數(shù)式的值,熟練掌握根與系數(shù)的關系,是解題的關鍵.4、A【分析】根據(jù)三角形的面積公式判斷A、D,根據(jù)射影定理判斷B、C.【詳解】由三角形的面積公式可知,CD?AB=AC?BC,A錯誤,符合題意,D正確,不符合題意;
∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD?AB,BC2=BD?AB,B、C正確,不符合題意;
故選:A.【點睛】本題考查的是射影定理、三角形的面積計算,掌握射影定理、三角形的面積公式是解題的關鍵.5、B【分析】將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據(jù)根的判別式以及根與系數(shù)的關系可求解.【詳解】由題意可得:﹣x+2=,所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴解不等式組,得t>.故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關鍵是利用兩個函數(shù)的解析式構成方程,再利用一元二次方程的根與系數(shù)的關系求解.6、A【分析】設△OAB的邊長為2a,根據(jù)等邊三角形的性質,可得點B的坐標為(-a,a),代入反比例函數(shù)解析式可得出a的值,繼而得出△OAB的周長.【詳解】解:如圖,設△OAB的邊長為2a,過B點作BM⊥x軸于點M.
又∵△OAB是等邊三角形,
∴OM=OA=a,BM=a,
∴點B的坐標為(-a,a),
∵點B是反比例函數(shù)y=?圖象上的點,
∴-a?a=-8,
解得a=±2(負值舍去),
∴△OAB的周長為:3×2a=6a=12.
故選:A.【點睛】此題考查反比例函數(shù)圖象上點的坐標特征,等邊三角形的性質,設△OAB的邊長為2a,用含a的代數(shù)式表示出點B的坐標是解題的關鍵.7、A【分析】在Rt△AOH中,由∠AOC=60°,解直角三角形求得AH=,然后利用垂徑定理解答即可.【詳解】解:∵OC⊥AB于H,∴AH=BH,在Rt△AOH中,∠AOC=60°,OH=1,∴AH=OH=,∴AB=2AH=2故選:A.【點睛】本題考查了垂徑定理以及解直角三角形,難度不大,掌握相關性質定理是解題關鍵.8、A【分析】已知圓O的半徑為r,點P到圓心O的距離是d,①當r>d時,點P在⊙O內,②當r=d時,點P在⊙O上,③當r<d時,點P在⊙O外,根據(jù)以上內容判斷即可.【詳解】∵⊙O的半徑為5,若PO=4,∴4<5,∴點P與⊙O的位置關系是點P在⊙O內,故選:A.【點睛】本題考查了點與圓的位置關系的應用,注意:已知圓O的半徑為r,點P到圓心O的距離是d,①當r>d時,點P在⊙O內,②當r=d時,點P在⊙O上,③當r<d時,點P在⊙O外.9、B【分析】利用平均數(shù)、中位數(shù)、方差和標準差的定義對各選項進行判斷.【詳解】這組數(shù)據(jù)的平均數(shù)、方差和標準差都與第4個數(shù)有關,而這組數(shù)據(jù)從小到大排序后,位于中間位置的數(shù)是36,與十位數(shù)字是2個位數(shù)字未知的兩位數(shù)無關,∴計算結果與涂污數(shù)字無關的是中位數(shù).故選:B.【點睛】本題考查了標準差:樣本方差的算術平方根表示樣本的標準差,它也描述了數(shù)據(jù)對平均數(shù)的離散程度.也考查了中位數(shù)、平均數(shù).10、B【解析】試題解析:在拋物線頂點式方程中,拋物線的對稱軸方程為x=h,∴拋物線的對稱軸是直線x=-2,故選B.11、B【分析】分別分析各選項的題設是否能推出結論,即可得到答案.【詳解】解:A.有意義的取值范圍是,故選項A命題錯誤;B.一組數(shù)據(jù)的方差越大,這組數(shù)據(jù)波動性越大,故選項B命題正確;C.若,則的補角為,故選項C命題錯誤;D.布袋中有除顏色以外完全相同的個黃球和個白球,從布袋中隨機摸出一個球是白球的概率為,故選項D命題錯誤;故答案為B.【點睛】本題考查了命題真假的判斷,掌握分析各選項的題設能否退出結論的知識點是解答本題的關鍵.12、D【解析】根據(jù)反比例函數(shù)的定義逐項分析即可.【詳解】A.是一次函數(shù),故不符合題意;B.二次函數(shù),故不符合題意;C.不是反比例函數(shù),故不符合題意;D.是反比例函數(shù),符合題意;故選D.【點睛】本題考查了反比例函數(shù)的定義,一般地,形如(k為常數(shù),k≠0)的函數(shù)叫做反比例函數(shù).二、填空題(每題4分,共24分)13、15【分析】利用絕對值和二次根式的非負性求得的值,然后確定兩個角的度數(shù),從而求解.【詳解】解:由題意可知:∴∴∠α=60°,∠β=45°∴∠α-∠β=15°故答案為:15【點睛】本題考查絕對值及二次根式的非負性和特殊角的三角函數(shù)值,正確計算是本題的解題關鍵.14、【分析】連接DF,OD,根據(jù)圓周角定理得到∠CDF=90°,根據(jù)三角形的內角和得到∠COD=120°,根據(jù)三角函數(shù)的定義得到CF==4,根據(jù)弧長公式即可得到結論.【詳解】解:如圖,連接DF,OD,∵CF是⊙O的直徑,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于點D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半徑=2,∴劣弧的長==π,故答案為π.【點睛】本題考查了圓周角定理,解直角三角形,弧長的計算,作出輔助線構建直角三角形是本題的關鍵.15、1【解析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出方程求解.【詳解】根據(jù)題意,得:,解得:,故答案為:1.【點睛】此題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比.16、【分析】連接AC、AD,由各邊都相等,得△ABG、△AEF、△CBG和△DEF都是等邊三角形,四邊形ABCG、四邊形AEDF是菱形,若設AB的長為x,根據(jù)等邊三角形、菱形的性質,計算出AD的長,∠BAC=∠EAD=30°,證明∠BAF=∠CAD,在△CAD中構造直角△AMD,利用勾股定理求出cos∠CAD.【詳解】連接AC、AD,過點D作DM⊥AC,垂直為M.設AE的長為x,則AB=AG=BG=CG=CB=AF=AE=EF=x,∴△ABG、△AEF、△CBG和△DEF都是等邊三角形,四邊形ABCG、四邊形AEDF是菱形,
∴∠BAC=∠EAD=30°∴∵∠CAD=∠BAE-∠BAC-∠EAD=∠BAE-60°,∠BAF=∠BAE-∠EAF=∠BAE-60°∴∠BAF=∠CAD在Rt△AMD中,因為DM=AM=cos∠CAD,CM=在Rt△CMD中,
CD2=CM2+MD2,
即
整理,得
∴cos∠CAD=
∴cos∠BAF=故答案為:.【點睛】本題考查了等邊三角形與菱形的性質,勾股定理以及三角函數(shù)的應用,解題的關鍵是根據(jù)勾股定理建立方程.17、1【分析】根據(jù)題目中的函數(shù)解析式可以求得h的最大值,從而可以求得小球從拋出后運動4秒共運動的路徑長.【詳解】解:∵h=30t?5t2=?5(t?3)2+45(0≤t≤6),∴當t=3時,h取得最大值,此時h=45,∴小球從拋出后運動4秒共運動的路徑長是:45+[45?(30×4?5×42)]=1(米),故答案為1.【點睛】本題考查二次函數(shù)的應用,解答本題的關鍵是明確題意,求出相應的路徑的長.18、【分析】根據(jù)黃金分割的概念得到,把代入計算即可.【詳解】∵P是線段AB的黃金分割點,∴故答案為.【點睛】本題考查了黃金分割點的應用,理解黃金分割點的比例并會運算是解題的關鍵.三、解答題(共78分)19、(1);(2)或【分析】(1)先設出拋物線的頂點式,再將點A的坐標代入可得出結果;(2)先求出射線的解析式為,可設點P的坐標為(x,x).圓與射線OA相交于兩點,分兩種情況:①如圖1當時,構造和,再在直角三角形中利用勾股定理,列方程求解;②如圖2,當時,構造和,再在直角三角形中利用勾股定理,列方程求解.【詳解】解:(1)根據(jù)頂點設拋物線的解析式為:,代入點,得:,拋物線的解析式為:.設直線的解析式為:,分別代入和,得:,直線的解析式為:;(2)由(1)得:直線的解析式為,令,得,由題意可得射線的解析式為,點在射線上,則可設點,由圖可知滿足條件的點有兩個:①當時,構造和,可得:如圖1:由圖可得,,,.在Rt△PMD中,,在Rt△PBG中,,在Rt△BMH中,,點在以線段為直徑的圓上,,可得:,即:.整理,得:,解得:;,.;②當時,如圖2,構造和,可得:同理,根據(jù)BM2=BP2+PM2,可得方程:42+42=(6-x)2+x2+(x-2)2+(x-4)2,化簡得,,解得:,∵..綜上所述,符合題目條件的點有兩個,其坐標分別為:或.【點睛】本題主要考查二次函數(shù)解析式的求法,以及圓的相關性質,關鍵是構造直角三角形利用勾股定理列方程解決問題.20、(1)證明見解析;(2)與垂直,證明見解析.【分析】(1)由比例線段可知,我們需要證明△ADC∽△EGC,由兩個角對應相等即可證得;
(2)由矩形的判定定理可知,四邊形AFEG為矩形,根據(jù)矩形的性質及相似三角形的判定可得到△AFD∽△CGD,從而不難得到結論;【詳解】證明:(1)在和中,∵,,∴.∴.解:(2)與垂直.證明如下:在四邊形中,∵,∴四邊形為矩形.∴.,∴.又∵為直角三角形,,∴,∴.∴.∵,∴.即.∴.【點睛】本題主要考查了相似三角形的判定和性質,全等三角形的判定和性質,等腰直角三角形的性質,同角的余角相等,判斷出△ADF≌△CDG是解本題的關鍵.21、(1)44不是一個“喜數(shù)”,72是一個“8喜數(shù)”,理由見解析;(2)“7喜數(shù)”有4個:21、42、63、1【分析】(1)根據(jù)“n喜數(shù)”的定義解答即可;(2)設存在“7喜數(shù)”,設其個位數(shù)字為a,十位數(shù)字為b,(a,b為1到9的自然數(shù)),則10b+a=7(a+b),化簡得:b=2a,由此即可得出結論.【詳解】(1)44不是一個“喜數(shù)”,因為,72是一個“8喜數(shù)”,因為;(2)設存在“7喜數(shù)”,設其個位數(shù)字為,十位數(shù)字為,(,為1到9的自然數(shù)),由定義可知:化簡得:因為,為1到9的自然數(shù),∴,;,;,;,;∴“7喜數(shù)”有4個:21、42、63、1.【點睛】本題考查了因式分解的應用.掌握“n喜數(shù)”的定義是解答本題的關鍵.22、(1)見解析;(2)【分析】(1)由∠1=∠3,依據(jù)等式的基本性質,得,結合∠B=∠D,依據(jù)兩組角分別相等的三角形相似可證;(2)依據(jù)相似的性質可求.【詳解】解:∵∠1=∠3,∴∠1+∠2=∠3+∠2,即,又∵∠B=∠D,∴△ABC∽△ADE.(2)∵△ABC∽△ADE,∴,又∵AB=DE=5,BC=1,∴,∴.【點睛】本題考查了相似三角形的判定與性質,解題的關鍵是熟練掌握相似的判定定理和性質定理,并熟悉基本圖形.23、2秒或者5【分析】由題意可知要使以P、B、Q為頂點的三角形與以A、B、C為頂點的三角形相似,則要分兩種情況進行分析從而解得所需的時間.【詳解】解:設他們行走的時間為x秒由題意得:AP=xcm,BQ=2x,BP=(10-x)因為∠PBQ=∠ABC,分兩種情況:當時,,解得,當時,,解得,答:出發(fā)2秒或者5秒時相似.【點睛】本題考查相似三角形的判定及矩形的性質等知識點的綜合運用,運用數(shù)形結合思維分析是解題的關鍵,注意分情況討論求解.24、(1)證明見解析;(1)CF﹣CD=BC;(3)①CD﹣CF=BC;②1.【分析】(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得.(1)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.②證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)正方形的性質即可求得DF的長,則OC即可求得.【詳解】解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴BD=CF.∵BD+CD=BC,∴CF+CD=BC.(1)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.∴△FCD是直角三角形.∵正方形ADEF的邊長為且對角線AE、DF相交于點O,∴DF=AD=4,O為DF中點.∴OC=DF=1.25、(1)見解析,,;(2)見解析【分析】(1)利用網(wǎng)格特點和旋轉的性質,畫
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國人口遷移課件
- 《GB 10080-2001空調用通風機安全要求》(2025版)深度解析
- 廣告合作協(xié)議合同
- (二模)太原市2025年高三年級模擬考試(二)地理試卷(含答案 )
- 嚴明紀律班會課件
- 合同風險管理與應對策略培訓班
- 荒山開發(fā)合作合同書樣本
- 短期演員聘請合同2025
- 肇慶市實驗中學高三生物三四五高效課堂教學設計:細胞的衰老、凋亡、癌變
- 江蘇省無錫市青陽初級中學2025年初三第三次調查研究考試化學試題含解析
- SAP軟件FICO模塊常用增強之一:固定資產的屏幕增強
- 醫(yī)院門診登記本
- 如愿二聲部合唱簡譜文檔
- GB/T 1531-2020銅及銅合金毛細管
- GB/T 12785-2002潛水電泵試驗方法
- 機械制圖國家標準
- 汽車吊起重吊裝方案-
- 陰囊疾病超聲診斷課件
- 信息資產及分級管理程序
- 信用修復授權委托書
- 危大工程驗收記錄表(腳手架工程)
評論
0/150
提交評論