




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列命題中,真命題的個數為()①命題“若,則”的否命題;②命題“若,則或”;③命題“若,則直線與直線平行”的逆命題.A.0 B.1 C.2 D.32.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.3.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.4.已知正項等比數列的前項和為,且,則公比的值為()A. B.或 C. D.5.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.6.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.7.若雙曲線的一條漸近線與圓至多有一個交點,則雙曲線的離心率的取值范圍是()A. B. C. D.8.已知實數,,函數在上單調遞增,則實數的取值范圍是()A. B. C. D.9.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.9010.已知各項都為正的等差數列中,,若,,成等比數列,則()A. B. C. D.11.已知集合,則全集則下列結論正確的是()A. B. C. D.12.已知等差數列的前項和為,,,則()A.25 B.32 C.35 D.40二、填空題:本題共4小題,每小題5分,共20分。13.已知是拋物線的焦點,是上一點,的延長線交軸于點.若為的中點,則_________.14.命題“對任意,”的否定是.15.已知函數恰好有3個不同的零點,則實數的取值范圍為____16.已知函數有且只有一個零點,則實數的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.18.(12分)在直角坐標系xOy中,直線的參數方程為(t為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.19.(12分)已知函數.(1)解不等式:;(2)求證:.20.(12分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:21.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)已知數列滿足對任意都有,其前項和為,且是與的等比中項,.(1)求數列的通項公式;(2)已知數列滿足,,設數列的前項和為,求大于的最小的正整數的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
否命題與逆命題是等價命題,寫出①的逆命題,舉反例排除;原命題與逆否命題是等價命題,寫出②的逆否命題后,利用指數函數單調性驗證正確;寫出③的逆命題判,利用兩直線平行的條件容易判斷③正確.【詳解】①的逆命題為“若,則”,令,可知該命題為假命題,故否命題也為假命題;②的逆否命題為“若且,則”,該命題為真命題,故②為真命題;③的逆命題為“若直線與直線平行,則”,該命題為真命題.故選:C.【點睛】本題考查判斷命題真假.判斷命題真假的思路:(1)判斷一個命題的真假時,首先要弄清命題的結構,即它的條件和結論分別是什么,然后聯系其他相關的知識進行判斷.(2)當一個命題改寫成“若,則”的形式之后,判斷這個命題真假的方法:①若由“”經過邏輯推理,得出“”,則可判定“若,則”是真命題;②判定“若,則”是假命題,只需舉一反例即可.2.A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.3.B【解析】
設過點作的垂線,其方程為,聯立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.4.C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數列,故,所以,故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.5.C【解析】
結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.6.B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.7.C【解析】
求得雙曲線的漸近線方程,可得圓心到漸近線的距離,由點到直線的距離公式可得的范圍,再由離心率公式計算即可得到所求范圍.【詳解】雙曲線的一條漸近線為,即,由題意知,直線與圓相切或相離,則,解得,因此,雙曲線的離心率.故選:C.【點睛】本題考查雙曲線的離心率的范圍,注意運用圓心到漸近線的距離不小于半徑,考查化簡整理的運算能力,屬于中檔題.8.D【解析】
根據題意,對于函數分2段分析:當,由指數函數的性質分析可得①,當,由導數與函數單調性的關系可得,在上恒成立,變形可得②,再結合函數的單調性,分析可得③,聯立三個式子,分析可得答案.【詳解】解:根據題意,函數在上單調遞增,
當,若為增函數,則①,
當,若為增函數,必有在上恒成立,
變形可得:,
又由,可得在上單調遞減,則,
若在上恒成立,則有②,
若函數在上單調遞增,左邊一段函數的最大值不能大于右邊一段函數的最小值,則需有,③
聯立①②③可得:.
故選:D.【點睛】本題考查函數單調性的性質以及應用,注意分段函數單調性的性質.9.A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.10.A【解析】試題分析:設公差為或(舍),故選A.考點:等差數列及其性質.11.D【解析】
化簡集合,根據對數函數的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D【點睛】本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.12.C【解析】
設出等差數列的首項和公差,即可根據題意列出兩個方程,求出通項公式,從而求得.【詳解】設等差數列的首項為,公差為,則,解得,∴,即有.故選:C.【點睛】本題主要考查等差數列的通項公式的求法和應用,涉及等差數列的前項和公式的應用,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意可得,又由于為的中點,且點在軸上,所以可得點的橫坐標,代入拋物線方程中可求點的縱坐標,從而可求出點的坐標,再利用兩點間的距離公式可求得結果.【詳解】解:因為是拋物線的焦點,所以,設點的坐標為,因為為的中點,而點的橫坐標為0,所以,所以,解得,所以點的坐標為所以,故答案為:【點睛】此題考查拋物線的性質,中點坐標公式,屬于基礎題.14.存在,使得【解析】試題分析:根據命題否定的概念,可知命題“對任意,”的否定是“存在,使得”.考點:命題的否定.15.【解析】
恰好有3個不同的零點恰有三個根,然后轉化成求函數值域即可.【詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【點睛】已知函數的零點個數求參數的取值范圍是重點也是難點,這類題一般用分離參數的方法,中檔題.16.【解析】
當時,轉化條件得有唯一實數根,令,通過求導得到的單調性后數形結合即可得解.【詳解】當時,,故不是函數的零點;當時,即,令,,,當時,;當時,,的單調減區間為,增區間為,又,可作出的草圖,如圖:則要使有唯一實數根,則.故答案為:.【點睛】本題考查了導數的應用,考查了轉化化歸思想和數形結合思想,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數根.當時,易知當,方程在上有且只有一個實數根.此時方程在上也有一個實數根.滿足條件.綜上,實數的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數求參數范圍,考查學生的運算能力,是一道中檔題.18.(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數分別為,,從而,則.【點睛】本題考查了極坐標方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道容易題.19.(1);(2)見解析.【解析】
(1)代入得,分類討論,解不等式即可;(2)利用絕對值不等式得性質,,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對于,可得.又,由于,所以.又由于,于是.所以.【點睛】本題考查了絕對值不等式得求解和恒成立問題,考查了學生分類討論,轉化劃歸,數學運算能力,屬于中檔題.20.(1);(2)見解析.【解析】
(1)將問題轉化為對任意恒成立,換元構造新函數即可得解;(2)結合(1)可得,令,求導后證明其導函數單調遞增,結合,即可得函數的單調區間和最小值,即可得證.【詳解】(1)對任意恒成立等價于對任意恒成立,令,,則,當時,,單調遞增;當時,,單調遞減;有最大值,.(2)證明:由(1)知,當時,即,,,令,則,令,則,在上是增函數,又,當時,;當時,,在上是減函數,在上是增函數,,即,.【點睛】本題考查了利用導數解決恒成立問題,考查了利用導數證明不等式,考查了計算能力和轉化化歸思想,屬于中檔題.21.(1)證明見詳解;(2).【解析】
(1)取中點為,通過證明//,進而證明線面平行;(2)取中點為,以為坐標原點建立直角坐標系,求得兩個平面的法向量,用向量法解得二面角的大小.【詳解】(1)證明:取的中點,連結,,如下圖所示:在中,因為為的中點,,且,又為的中點,,,且,,且,四邊形為平行四邊形,又平面,平面,平面,即證.(2)取中點,連結,,則,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高三下學期《遇見最美的時光我的人生滿意度》主題班會課件
- 汽車使用與維護 課件 項目三 空調系統的使用與維護
- 2025年環保速凍噴劑項目可行性研究報告
- 江蘇航運職業技術學院《食品類專業寫作》2023-2024學年第一學期期末試卷
- 浙江省杭州市杭州第二中學2025年高三下第一次摸底考試歷史試題試卷含解析
- 那曲市2024-2025學年初三下學期期末考試物理試題仿真(A)卷含解析
- 低壓電器 課件 單元三 項目二 任務二 掌握三相異步電動機點動控制線路
- 無錫科技職業學院《統計學原理含統計軟件應用》2023-2024學年第二學期期末試卷
- 江蘇工程職業技術學院《ADR實務》2023-2024學年第二學期期末試卷
- 汕頭大學《鋼與組合結構設計》2023-2024學年第二學期期末試卷
- 傳染病防治知識和技能培訓計劃
- 《EPS處理表面氧化鐵皮技術要求 》
- 【MOOC】書法鑒賞-浙江傳媒學院 中國大學慕課MOOC答案
- 足球場運動草坪全年養護計劃
- (高清版)DBJ52∕T 017-2014 回彈法檢測山砂混凝土抗壓強度技術規程
- 現代化背景下企業檔案管理創新路徑
- 《幼兒教育政策與法規》課件-單元4 幼兒園的保育和教育
- 2024年私募基金爭議解決研究報告之一:私募基金管理人謹慎勤勉義務之邊界探析-國楓研究院
- 環衛設施設備更新實施方案
- 廣東省高州市2023-2024學年高一下學期期中考試數學
- 2024年高等教育文學類自考-06050人際關系心理學考試近5年真題附答案
評論
0/150
提交評論