2022年湖北省宜昌市一中、恩施高中數學高三上期末學業質量監測試題含解析_第1頁
2022年湖北省宜昌市一中、恩施高中數學高三上期末學業質量監測試題含解析_第2頁
2022年湖北省宜昌市一中、恩施高中數學高三上期末學業質量監測試題含解析_第3頁
2022年湖北省宜昌市一中、恩施高中數學高三上期末學業質量監測試題含解析_第4頁
2022年湖北省宜昌市一中、恩施高中數學高三上期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數在上單調遞減的充要條件是()A. B. C. D.2.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.3.已知函數,以下結論正確的個數為()①當時,函數的圖象的對稱中心為;②當時,函數在上為單調遞減函數;③若函數在上不單調,則;④當時,在上的最大值為1.A.1 B.2 C.3 D.44.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.5.在邊長為1的等邊三角形中,點E是中點,點F是中點,則()A. B. C. D.6.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現.如圖所示的網格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.7.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件8.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-19.已知實數、滿足不等式組,則的最大值為()A. B. C. D.10.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b12.已知函數,若,則下列不等關系正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為雙曲線的左、右焦點,過點作直線與圓相切于點,且與雙曲線的右支相交于點,若是上的一個靠近點的三等分點,且,則四邊形的面積為_______.14.設,若函數有大于零的極值點,則實數的取值范圍是_____15.雙曲線的焦距為__________,漸近線方程為________.16.已知一組數據1.6,1.8,2,2.2,2.4,則該組數據的方差是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,是邊長為2的等邊三角形,,,.(1)證明:平面平面;(2),分別是,的中點,是線段上的動點,若二面角的平面角的大小為,試確定點的位置.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)以直角坐標系的原點為極點,軸的非負半軸為極軸,且兩坐標系取相同的長度單位.已知曲線的參數方程:(為參數),直線的極坐標方程:(1)求曲線的極坐標方程;(2)若直線與曲線交于、兩點,求的最大值.20.(12分)已知數列滿足:,,且對任意的都有,(Ⅰ)證明:對任意,都有;(Ⅱ)證明:對任意,都有;(Ⅲ)證明:.21.(12分)已知函數f(x)=ex-x2-kx(其中e為自然對數的底,k為常數)有一個極大值點和一個極小值點.(1)求實數k的取值范圍;(2)證明:f(x)的極大值不小于1.22.(10分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最小?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

先求導函數,函數在上單調遞減則恒成立,對導函數不等式換元成二次函數,結合二次函數的性質和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數單調區間.求三角函數單調區間的兩種方法:(1)代換法:就是將比較復雜的三角函數含自變量的代數式整體當作一個角(或),利用基本三角函數的單調性列不等式求解;(2)圖象法:畫出三角函數的正、余弦曲線,結合圖象求它的單調區間.2、B【解析】

由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.3、C【解析】

逐一分析選項,①根據函數的對稱中心判斷;②利用導數判斷函數的單調性;③先求函數的導數,若滿足條件,則極值點必在區間;④利用導數求函數在給定區間的最值.【詳解】①為奇函數,其圖象的對稱中心為原點,根據平移知識,函數的圖象的對稱中心為,正確.②由題意知.因為當時,,又,所以在上恒成立,所以函數在上為單調遞減函數,正確.③由題意知,當時,,此時在上為增函數,不合題意,故.令,解得.因為在上不單調,所以在上有解,需,解得,正確.④令,得.根據函數的單調性,在上的最大值只可能為或.因為,,所以最大值為64,結論錯誤.故選:C【點睛】本題考查利用導數研究函數的單調性,極值,最值,意在考查基本的判斷方法,屬于基礎題型.4、D【解析】

利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.【點睛】本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.5、C【解析】

根據平面向量基本定理,用來表示,然后利用數量積公式,簡單計算,可得結果.【詳解】由題可知:點E是中點,點F是中點,所以又所以則故選:C【點睛】本題考查平面向量基本定理以及數量積公式,掌握公式,細心觀察,屬基礎題.6、C【解析】

根據三視圖可知,該幾何體是由兩個圓錐和一個圓柱構成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側面積為,下面圓錐的母線長為,底面周長為,側面積為,沒被擋住的部分面積為,中間圓柱的側面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數學文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎題.7、A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.8、D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.9、A【解析】

畫出不等式組所表示的平面區域,結合圖形確定目標函數的最優解,代入即可求解,得到答案.【詳解】畫出不等式組所表示平面區域,如圖所示,由目標函數,化為直線,當直線過點A時,此時直線在y軸上的截距最大,目標函數取得最大值,又由,解得,所以目標函數的最大值為,故選A.【點睛】本題主要考查簡單線性規劃求解目標函數的最值問題.其中解答中正確畫出不等式組表示的可行域,利用“一畫、二移、三求”,確定目標函數的最優解是解答的關鍵,著重考查了數形結合思想,及推理與計算能力,屬于基礎題.10、D【解析】

,不能得到,成立也不能推出,即可得到答案.【詳解】因為x,,當時,不妨取,,故時,不成立,當時,不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.11、B【解析】

先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.12、B【解析】

利用函數的單調性得到的大小關系,再利用不等式的性質,即可得答案.【詳解】∵在R上單調遞增,且,∴.∵的符號無法判斷,故與,與的大小不確定,對A,當時,,故A錯誤;對C,當時,,故C錯誤;對D,當時,,故D錯誤;對B,對,則,故B正確.故選:B.【點睛】本題考查分段函數的單調性、不等式性質的運用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、60【解析】

根據題中給的信息與雙曲線的定義可求得與,再在中,由余弦定理求解得,繼而得到各邊的長度,再根據計算求解即可.【詳解】如圖所示:設雙曲線的半焦距為.因為,,,所以由勾股定理,得.所以.因為是上一個靠近點的三等分點,是的中點,所以.由雙曲線的定義可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.則.則,得.則的底邊上的高為.所以.故答案為:60【點睛】本題主要考查了雙曲線中利用定義與余弦定理求解線段長度與面積的方法,需要根據雙曲線的定義表示各邊的長度,再在合適的三角形里面利用余弦定理求得基本量的關系.屬于難題.14、【解析】

先求導數,求解導數為零的根,結合根的分布求解.【詳解】因為,所以,令得,因為函數有大于0的極值點,所以,即.【點睛】本題主要考查利用導數研究函數的極值點問題,極值點為導數的變號零點,側重考查轉化化歸思想.15、6【解析】由題得所以焦距,故第一個空填6.由題得漸近線方程為.故第二個空填.16、0.08【解析】

先求解這組數據的平均數,然后利用方差的公式可得結果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數據的方差,明確方差的計算公式是求解的關鍵,側重考查數據分析的核心素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)為線段上靠近點的四等分點,且坐標為【解析】

(1)先通過線面垂直的判定定理證明平面,再根據面面垂直的判定定理即可證明;(2)分析位置關系并建立空間直角坐標系,根據二面角的余弦值與平面法向量夾角的余弦值之間的關系,即可計算出的坐標從而位置可確定.【詳解】(1)證明:因為,,,所以,即.又因為,,所以,,所以平面.因為平面,所以平面平面.(2)解:連接,因為,是的中點,所以.由(1)知,平面平面,所以平面.以為原點建立如圖所示的空間直角坐標系,則平面的一個法向量是,,,.設,,,,代入上式得,,,所以.設平面的一個法向量為,,,由,得.令,得.因為二面角的平面角的大小為,所以,即,解得.所以點為線段上靠近點的四等分點,且坐標為.【點睛】本題考查面面垂直的證明以及利用向量法求解二面角有關的問題,難度一般.(1)證明面面垂直,可通過先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾角的余弦值,要注意結合圖形分析.18、(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.19、(1);(2)10【解析】

(1)消去參數,可得曲線C的普通方程,再根據極坐標與直角坐標的互化公式,代入即可求得曲線C的極坐標方程;(2)將代入曲線C的極坐標方程,利用根與系數的關系,求得,進而得到=,結合三角函數的性質,即可求解.【詳解】(1)由題意,曲線C的參數方程為,消去參數,可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標方程為.(2)將代入,得,即,所以=,其中,當時,取最大值,最大值為10.【點睛】本題主要考查了參數方程與普通方程,極坐標方程與直角坐標方程的互化,以及曲線的極坐標方程的應用,著重考查了運算與求解能力,屬于中檔試題.20、(1)見解析(2)見解析(3)見解析【解析】分析:(1)用反證法證明,注意應用題中所給的條件,有效利用,再者就是注意應用反證法證題的步驟;(2)將式子進行相應的代換,結合不等式的性質證得結果;(3)結合題中的條件,應用反證法求得結果.詳解:證明:(Ⅰ)證明:采用反證法,若不成立,則若,則,與任意的都有矛盾;若,則有,則與任意的都有矛盾;故對任意,都有成立;(Ⅱ)由得,則,由(Ⅰ)知,,即對任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,則,取時,有,與矛盾.則.得證.點睛:該題考查的是有關命題的證明問題,在證題的過程中,注意對題中的條件的等價轉化,注意對式子的等價變形,以及證題的思路,要

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論