




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)2.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.3.已知函數(shù),若,則等于()A.-3 B.-1 C.3 D.04.已知,,那么是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.曲線在點處的切線方程為,則()A. B. C.4 D.86.復數(shù)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.本次模擬考試結束后,班級要排一張語文、數(shù)學、英語、物理、化學、生物六科試卷講評順序表,若化學排在生物前面,數(shù)學與物理不相鄰且都不排在最后,則不同的排表方法共有()A.72種 B.144種 C.288種 D.360種8.現(xiàn)有甲、乙、丙、丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,則乙、丙兩人恰好參加同一項活動的概率為A. B. C. D.9.若復數(shù),其中為虛數(shù)單位,則下列結論正確的是()A.的虛部為 B. C.的共軛復數(shù)為 D.為純虛數(shù)10.若為虛數(shù)單位,則復數(shù)的共軛復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.設函數(shù)在定義城內(nèi)可導,的圖象如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.12.設為虛數(shù)單位,則復數(shù)在復平面內(nèi)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.下表是關于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個人做進一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.14.已知多項式滿足,則_________,__________.15.若,則________,________.16.關于函數(shù)有下列四個命題:①函數(shù)在上是增函數(shù);②函數(shù)的圖象關于中心對稱;③不存在斜率小于且與函數(shù)的圖象相切的直線;④函數(shù)的導函數(shù)不存在極小值.其中正確的命題有______.(寫出所有正確命題的序號)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)若時,解不等式;(2)若關于的不等式在上有解,求實數(shù)的取值范圍.18.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.19.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.20.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.21.(12分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標.22.(10分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C【點睛】(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.2、B【解析】
解:當直線過點時,最大,故選B3、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數(shù)的表示方法,解題時注意根據(jù)問題的條件和求解的結論之間的關系去尋找函數(shù)的解析式要滿足的關系.4、B【解析】
由,可得,解出即可判斷出結論.【詳解】解:因為,且.,解得.是的必要不充分條件.故選:.【點睛】本題考查了向量數(shù)量積運算性質(zhì)、三角函數(shù)求值、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.5、B【解析】
求函數(shù)導數(shù),利用切線斜率求出,根據(jù)切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數(shù)的幾何意義,切線方程,屬于中檔題.6、A【解析】
試題分析:由題意可得:.共軛復數(shù)為,故選A.考點:1.復數(shù)的除法運算;2.以及復平面上的點與復數(shù)的關系7、B【解析】
利用分步計數(shù)原理結合排列求解即可【詳解】第一步排語文,英語,化學,生物4種,且化學排在生物前面,有種排法;第二步將數(shù)學和物理插入前4科除最后位置外的4個空擋中的2個,有種排法,所以不同的排表方法共有種.選.【點睛】本題考查排列的應用,不相鄰采用插空法求解,準確分步是關鍵,是基礎題8、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,利用古典概型及其概率的計算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學生平均分成兩個志愿者小組到校外參加兩項活動,基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項活動的基本事件個數(shù)為,所以乙丙兩人恰好參加同一項活動的概率為,故選B.【點睛】本題主要考查了排列組合的應用,以及古典概型及其概率的計算問題,其中解答中合理應用排列、組合的知識求得基本事件的總數(shù)和所求事件所包含的基本事件的個數(shù),利用古典概型及其概率的計算公式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.9、D【解析】
將復數(shù)整理為的形式,分別判斷四個選項即可得到結果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復數(shù)的模長、實部與虛部、共軛復數(shù)、復數(shù)的分類的知識,屬于基礎題.10、B【解析】
由共軛復數(shù)的定義得到,通過三角函數(shù)值的正負,以及復數(shù)的幾何意義即得解【詳解】由題意得,因為,,所以在復平面內(nèi)對應的點位于第二象限.故選:B【點睛】本題考查了共軛復數(shù)的概念及復數(shù)的幾何意義,考查了學生概念理解,數(shù)形結合,數(shù)學運算的能力,屬于基礎題.11、D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數(shù)圖象的識別,此類問題應根據(jù)原函數(shù)的單調(diào)性來考慮導函數(shù)的符號與零點情況,本題屬于基礎題.12、A【解析】
利用復數(shù)的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點所在象限,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、32【解析】
由已知可得抽取的比例,計算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點睛】本題考查分層抽樣中求樣本容量,屬于基礎題.14、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數(shù)為∴∴∴令,得故答案為5,7215、【解析】
根據(jù)誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.16、①②③【解析】
由單調(diào)性、對稱性概念、導數(shù)的幾何意義、導數(shù)與極值的關系進行判斷.【詳解】函數(shù)的定義域是,由于,在上遞增,∴函數(shù)在上是遞增,①正確;,∴函數(shù)的圖象關于中心對稱,②正確;,時取等號,∴③正確;,設,則,顯然是即的極小值點,④錯誤.故答案為:①②③.【點睛】本題考查函數(shù)的單調(diào)性、對稱性,考查導數(shù)的幾何意義、導數(shù)與極值,解題時按照相關概念判斷即可,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)零點分段法,分,,討論即可;(2)當時,原問題可轉(zhuǎn)化為:存在,使不等式成立,即.【詳解】解:(1)若時,,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,當時,原不等式可化為,解得,所以,綜上述:不等式的解集為;(2)當時,由得,即,故得,又由題意知:,即,故的范圍為.【點睛】本題考查解絕對值不等式以及不等式能成立求參數(shù),考查學生的運算能力,是一道容易題.18、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運算求得兩個平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴,,,,,,.(2),設平面的法向量為.則,代入可得,令解得,即,設直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設,故,由,得,解得,即,設平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點睛】本題考查了空間向量的綜合應用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.19、(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=【點睛】本題考查了線線垂直,線面夾角,意在考查學生的計算能力和空間想象能力.20、(1)證明見解析;(2)【解析】
(1)取的中點,連接,易得,進而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點,中點,連接,易證平面,平面,從而可知兩兩垂直,以點為坐標原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標系,進而求出平面的法向量,及平面的法向量為,由,可求得平面與平面所成的二面角的正弦值.【詳解】(1)證明:如圖1,取的中點,連接.,,,,且,四邊形為平行四邊形,.又平面,平面,平面.(2)如圖2,取中點,中點,連接.,,平面平面,平面平面,平面,平面,兩兩垂直.以點為坐標原點,向量的方向分別為軸正方向建立如圖所示空間直角坐標系.由,可得,在等腰梯形中,,易知,.則,,設平面的法向量為,則,取,得.設平面的法向量為,則,取,得.因為,,,所以,所以平面與平面所成的二面角的正弦值為.【點睛】本題考查線面平行的證明,考查二面角的求法,利用空間向量法是解決本題的較好方法,屬于中檔題.21、(1);(2)證明見解析,或【解析】
(1)根據(jù)點到直線的公式結合二次函數(shù)的性質(zhì)即可求出;(2)設,,,,表示出直線,的方程,利用表示出,,即可求定點的坐標.【詳解】(1)設拋物線上點的坐標為,則,時取等號),則拋物線上的點到直線距離的最小值;(2)設,,,,,,直線,的方程為分別為,,由兩條直線都經(jīng)過點點得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點,是直線上的動點,時,,時,,,或.【點睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過定點的解法,意在考查學生對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡規(guī)劃設計師考試中的知識轉(zhuǎn)化與實際應用研究試題及答案
- 2025年半金屬汽車剎車材料項目建議書
- 福建省仙游縣郊尾中學2025年高考適應性考試物理試卷含解析
- 育嬰師孩子行為觀察的實施方法試題及答案
- 藥物經(jīng)濟學案例分析考試試題及答案
- 工業(yè)污水處理廠項目可行性分析與前景展望
- 逐步推進的臨床執(zhí)業(yè)醫(yī)師考試試題及答案
- 計算機二級考試分模塊復習試題及答案
- 計算機二級考試全景掃描試題及答案
- 藥物開發(fā)中的市場調(diào)研技巧試題及答案
- 國家開放大學電大本科《兒童心理學》網(wǎng)絡課形考任務話題討論答案(第二套)
- 《淮陰師范學院二級學院經(jīng)費核撥管理辦法(試行)》
- 諾基亞LTE FDD設備技術說明(2)
- 清篩車挖掘輸送裝置
- 實名核驗(法人)業(yè)務辦理表
- 初中尺規(guī)作圖典型例題歸納總結(共10頁)
- 離合齒輪的工藝規(guī)程與專用夾具設計
- 武漢土地使用稅和土地征稅等級現(xiàn)行標準
- SCR法和Contirod法銅桿生產(chǎn)線的比較資料講解
- 繪本PPT:胡椒生長在哪里
- 公路壓實度自動計算公式
評論
0/150
提交評論