


版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023學年高考數(shù)學模擬測試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.2.我們熟悉的卡通形象“哆啦A夢”的長寬比為.在東方文化中通常稱這個比例為“白銀比例”,該比例在設計和建筑領域有著廣泛的應用.已知某電波塔自下而上依次建有第一展望臺和第二展望臺,塔頂?shù)剿椎母叨扰c第二展望臺到塔底的高度之比,第二展望臺到塔底的高度與第一展望臺到塔底的高度之比皆等于“白銀比例”,若兩展望臺間高度差為100米,則下列選項中與該塔的實際高度最接近的是()A.400米 B.480米C.520米 D.600米3.已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.4.已知拋物線:的焦點為,準線為,是上一點,直線與拋物線交于,兩點,若,則為()A. B.40 C.16 D.5.若,則函數(shù)在區(qū)間內單調遞增的概率是()A.B.C.D.6.已知定義在上的函數(shù)滿足,且當時,.設在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.7.若,滿足約束條件,則的最大值是()A. B. C.13 D.8.已知函數(shù)()的最小值為0,則()A. B. C. D.9.已知函數(shù),則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱10.框圖與程序是解決數(shù)學問題的重要手段,實際生活中的一些問題在抽象為數(shù)學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,11.展開式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.128012.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.15.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.16.已知函數(shù)的圖象在點處的切線方程是,則的值等于__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數(shù)的取值范圍.18.(12分)如圖,四棱錐的底面為直角梯形,,,,底面,且,為的中點.(1)證明:;(2)設點是線段上的動點,當直線與直線所成的角最小時,求三棱錐的體積.19.(12分)若關于的方程的兩根都大于2,求實數(shù)的取值范圍.20.(12分)已知函數(shù),.(Ⅰ)判斷函數(shù)在區(qū)間上零點的個數(shù),并證明;(Ⅱ)函數(shù)在區(qū)間上的極值點從小到大分別為,,證明:21.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.22.(10分)已知函數(shù).(1)求函數(shù)的單調遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【答案解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【題目詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【答案點睛】本題考查余弦型函數(shù)性質的應用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學生數(shù)形結合、數(shù)學運算的能力,是一道中檔題.2、B【答案解析】
根據(jù)題意,畫出幾何關系,結合各線段比例可先求得第一展望臺和第二展望臺的距離,進而由比例即可求得該塔的實際高度.【題目詳解】設第一展望臺到塔底的高度為米,塔的實際高度為米,幾何關系如下圖所示:由題意可得,解得;且滿足,故解得塔高米,即塔高約為480米.故選:B【答案點睛】本題考查了對中國文化的理解與簡單應用,屬于基礎題.3、B【答案解析】
構造函數(shù)(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數(shù)解,構造函數(shù),,通過導數(shù)研究單調性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結果.【題目詳解】構造函數(shù)(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數(shù)x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【答案點睛】本題考查導數(shù)在判斷函數(shù)單調性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.4、D【答案解析】
如圖所示,過分別作于,于,利用和,聯(lián)立方程組計算得到答案.【題目詳解】如圖所示:過分別作于,于.,則,根據(jù)得到:,即,根據(jù)得到:,即,解得,,故.故選:.【答案點睛】本題考查了拋物線中弦長問題,意在考查學生的計算能力和轉化能力.5、B【答案解析】函數(shù)在區(qū)間內單調遞增,,在恒成立,在恒成立,,函數(shù)在區(qū)間內單調遞增的概率是,故選B.6、C【答案解析】
由已知先求出,即,進一步可得,再將所求問題轉化為對于任意正整數(shù)恒成立,設,只需找到數(shù)列的最大值即可.【題目詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設,,令,解得,令,解得,考慮到,故有當時,單調遞增,當時,有單調遞減,故數(shù)列的最大值為,所以.故選:C.【答案點睛】本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調性的判斷等知識,是一道較為綜合的數(shù)列題.7、C【答案解析】
由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【題目詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【答案點睛】本題考查線性規(guī)劃問題,考查數(shù)形結合的數(shù)學思想以及運算求解能力,屬于基礎題.8、C【答案解析】
設,計算可得,再結合圖像即可求出答案.【題目詳解】設,則,則,由于函數(shù)的最小值為0,作出函數(shù)的大致圖像,結合圖像,,得,所以.故選:C【答案點睛】本題主要考查了分段函數(shù)的圖像與性質,考查轉化思想,考查數(shù)形結合思想,屬于中檔題.9、D【答案解析】
先將函數(shù)化為,再由三角函數(shù)的性質,逐項判斷,即可得出結果.【題目詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數(shù)對稱軸可得:解得:,當,,故C正確;對于D,正弦函數(shù)對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【答案點睛】本題考查三角恒等變換,三角函數(shù)的性質,熟記三角函數(shù)基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.10、A【答案解析】
依題意問題是,然后按直到型驗證即可.【題目詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【答案點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.11、A【答案解析】
根據(jù)二項式展開式的公式得到具體為:化簡求值即可.【題目詳解】根據(jù)二項式的展開式得到可以第一個括號里出項,第二個括號里出項,或者第一個括號里出,第二個括號里出,具體為:化簡得到-1280x2故得到答案為:A.【答案點睛】求二項展開式有關問題的常見類型及解題策略:(1)求展開式中的特定項.可依據(jù)條件寫出第項,再由特定項的特點求出值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第項,由特定項得出值,最后求出其參數(shù).12、C【答案解析】
對函數(shù)求導,對a分類討論,分別求得函數(shù)的單調性及極值,結合端點處的函數(shù)值進行判斷求解.【題目詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【答案點睛】本題考查了利用導數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調性及極值問題,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【答案解析】
先求出球O1的半徑,再求出球的半徑,即得球的表面積.【題目詳解】解:,,,,設球O1的半徑為,由題得,所以棱柱的側棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【答案點睛】本題主要考查幾何體的內切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.14、【答案解析】
注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【題目詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【答案點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎題.15、【答案解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數(shù)的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【題目詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【答案點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.16、【答案解析】
利用導數(shù)的幾何意義即可解決.【題目詳解】由已知,,,故.故答案為:.【答案點睛】本題考查導數(shù)的幾何意義,要注意在某點的切線與過某點的切線的區(qū)別,本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ).(Ⅱ).【答案解析】
(Ⅰ)時,根據(jù)絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【題目詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數(shù)的取值范圍是【答案點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數(shù)絕對值三角不等式的應用問題,屬于常規(guī)題型.18、(1)見解析;(2).【答案解析】
(1)要證明,只需證明平面即可;(2)以C為原點,分別以的方向為軸、軸、軸的正方向,建立空間直角坐標系,利用向量法求,并求其最大值從而確定出使問題得到解決.【題目詳解】(1)連結AC、AE,由已知,四邊形ABCE為正方形,則①,因為底面,則②,由①②知平面,所以.(2)以C為原點,建立如圖所示的空間直角坐標系,則,,,,所以,,,設,,則,所以,設,則,所以當,即時,取最大值,從而取最小值,即直線與直線所成的角最小,此時,則,因為,,則平面,從而M到平面的距離,所以.【答案點睛】本題考查線面垂直證線線垂直、異面直線直線所成角計算、換元法求函數(shù)最值以及等體積法求三棱錐的體積,考查的內容較多,計算量較大,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.19、【答案解析】
先令,根據(jù)題中條件得到,求解,即可得出結果.【題目詳解】因為關于的方程的兩根都大于2,令所以有,解得,所以.【答案點睛】本題主要考查一元二次方程根的分布問題,熟記二次函數(shù)的特征即可,屬于常考題型.20、(Ⅰ)函數(shù)在區(qū)間上有兩個零點.見解析(Ⅱ)見解析【答案解析】
(Ⅰ)根據(jù)題意,,利用導函數(shù)研究函數(shù)的單調性,分類討論在區(qū)間的單調區(qū)間和極值,進而研究零點個數(shù)問題;(Ⅱ)求導,,由于在區(qū)間上的極值點從小到大分別為,,求出,利用導數(shù)結合單調性和極值點,即可證明出.【題目詳解】解:(Ⅰ),,當時,,,在區(qū)間上單調遞減,,在區(qū)間上無零點;當時,,在區(qū)間上單調遞增,,在區(qū)間上唯一零點;當時,,,在區(qū)間上單調遞減,,;在區(qū)間上唯一零點;綜上可知,函數(shù)在區(qū)間上有兩個零點.(Ⅱ),,由(Ⅰ)知在無極值點;在有極小值點,即為;在有極大值點,即為,由,即,,2…,,,,,,以及的單調性,,,,,由函數(shù)在單調遞增,得,,由在單調遞減,得,即,故.【答案點睛】本題考查利用導數(shù)研究函數(shù)的單調性和極值,通過導數(shù)解決函數(shù)零點個數(shù)問題和證明不等式,考查轉化思想和計算能力.21、(1)見解析;(2)存在,長【答案解析】
(1)先證面,又因為面,所以平面平面.(2)根據(jù)題意建立空間直角坐標系.列出各點的坐標表示,設,則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【題目詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 發(fā)掘潛力2025年土木工程師考試知識運用試題及答案
- 農業(yè)電商渠道管理考題關鍵要素試題及答案
- 創(chuàng)業(yè)扶持的地方實踐與探索試題及答案
- 創(chuàng)業(yè)扶持政策在自主品牌發(fā)展中的作用試題及答案
- 創(chuàng)業(yè)扶持政策在稅收方面的試題及答案
- 中國酚酞片行業(yè)發(fā)展趨勢及發(fā)展前景研究報告2025-2028版
- 中國自載式抽沙機械行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報告2025-2028版
- 2025年商務英語考試反思記錄試題及答案
- 2025年創(chuàng)業(yè)者的政策落地實踐試題及答案
- 農業(yè)電商創(chuàng)新實踐考題設計探討試題及答案
- 山東省山東名校考試聯(lián)盟2025年高三4月高考模擬考試英語試卷+答案
- 序段外包合同協(xié)議
- 話劇導演合同協(xié)議
- 軟件設計說明書
- 2023年中國海洋石油集團有限公司校園招聘筆試參考題庫附帶答案詳解
- 2025年天津市南開區(qū)中考一模語文試題(含答案)
- 工信委選調試題及答案
- GB/T 17591-2025阻燃織物
- 2025中國汽車出海潛在市場研究:澳大利亞篇-2025-03-市場解讀
- 合同歸檔培訓課件
- 2025年OTC市場分析現(xiàn)狀
評論
0/150
提交評論