




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每題4分,共48分)1.的值等于()A. B. C. D.2.如圖,如果∠BAD=∠CAE,那么添加下列一個條件后,仍不能確定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=3.若,則下列比例式中正確的是()A. B. C. D.4.如圖,已知A,B是反比例函數y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發,沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數圖象大致為()A. B. C. D.5.已知二次函數的與的部分對應值如表:下列結論:拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數是()A. B. C. D.6.如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點E,若點P、Q分別是AD和AE上的動點,則DQ+PQ的最小值()A.2B.4C.2D.47.如圖,AB為⊙O的直徑,弦CD⊥AB于點E,連接AC,OC,OD,若∠A=20°,則∠COD的度數為()A.40° B.60° C.80° D.100°8.如圖,在平行四邊形中,點在邊上,,連接交于點,則的面積與的面積之比為()A. B. C. D.9.方程化為一元二次方程一般形式后,二次項系數、一次項系數、常數項分別是()A.5,6,-8 B.5,-6,-8 C.5,-6,8 D.6,5,-810.如圖,在菱形ABCD中,對角線AC、BD相交于點O,BD=8,tan∠ABD=,則線段AB的長為()A. B.2 C.5 D.1011.一條排水管的截面如圖所示,已知排水管的半徑,水面寬,則截面圓心到水面的距離是()
A.3 B.4 C. D.812.式子在實數范圍內有意義,則的取值范圍是()A. B. C. D.二、填空題(每題4分,共24分)13.《九章算術》是東方數學思想之源,該書中記載:“今有勾八步,股一十五步,問勾中容圓徑幾何.”其意思為:“今有直角三角形,勾(短直角邊)長為8步,股(長直角邊)長為15步,問該直角三角形內切圓的直徑是多少步.”該問題的答案是________步.14.已知銳角α,滿足tanα=2,則sinα=_____.15.將拋物線y=x2先沿x軸方向向左平移2個單位,再沿y軸方向向下平移3個單位,所得拋物線的解析式是__.16.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.17.如圖,的中線、交于點,點在邊上,,那么的值是__________.18.如圖,菱形的邊長為4,,E為的中點,在對角線上存在一點,使的周長最小,則的周長的最小值為__________.三、解答題(共78分)19.(8分)周末,小華和小亮想用所學的數學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點C、A共線.已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據相關測量信息,求河寬AB.
20.(8分)已知在中,,,,為邊上的一點.過點作射線,分別交邊、于點、.(1)當為的中點,且、時,如圖1,_______:(2)若為的中點,將繞點旋轉到圖2位置時,_______;(3)若改變點到圖3的位置,且時,求的值.21.(8分)如圖,四邊形ABCD是矩形,AB=6,BC=4,點E在邊AB上(不與點A、B重合),過點D作DF⊥DE,交邊BC的延長線于點F.(1)求證:△DAE∽△DCF.(2)設線段AE的長為x,線段BF的長為y,求y與x之間的函數關系式.(3)當四邊形EBFD為軸對稱圖形時,則cos∠AED的值為.22.(10分)如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(點P不與A,B兩點重合),連接AP,過點O作OQ∥AP交BM于點Q,過點P作PE⊥AB于點C,交QO的延長線于點E,連接PQ,OP.(1)求證:△BOQ≌△POQ;(2)若直徑AB的長為1.①當PE=時,四邊形BOPQ為正方形;②當PE=時,四邊形AEOP為菱形.23.(10分)某數學興趣小組根據學習函數的經驗,對分段函數的圖象與性質進行了探究,請補充完整以下的探究過程.x…-2-101234…y…30-1010-3…(1)填空:a=.b=.(2)①根據上述表格數據補全函數圖象;②該函數圖象是軸對稱圖形還是中心對稱圖形?(3)若直線與該函數圖象有三個交點,求t的取值范圍.24.(10分)(1)已知:如圖1,為等邊三角形,點為邊上的一動點(點不與、重合),以為邊作等邊,連接.求證:①,②;(2)如圖2,在中,,,點為上的一動點(點不與、重合),以為邊作等腰,(頂點、、按逆時針方向排列),連接,類比題(1),請你猜想:①的度數;②線段、、之間的關系,并說明理由;(3)如圖3,在(2)的條件下,若點在的延長線上運動,以為邊作等腰,(頂點、、按逆時針方向排列),連接.①則題(2)的結論還成立嗎?請直接寫出,不需論證;②連結,若,,直接寫出的長.25.(12分)如圖,在平面直角坐標系中,拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.(1)求直線AC解析式;(2)過點A作AD平行于x軸,交拋物線于點D,點F為拋物線上的一點(點F在AD上方),作EF平行于y軸交AC于點E,當四邊形AFDE的面積最大時?求點F的坐標,并求出最大面積;(3)若動點P先從(2)中的點F出發沿適當的路徑運動到拋物線對稱軸上點M處,再沿垂直于y軸的方向運動到y軸上的點N處,然后沿適當的路徑運動到點C停止,當動點P的運動路徑最短時,求點N的坐標,并求最短路徑長.26.一茶葉專賣店經銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg,且不高于180元/kg,經銷一段時間后得到如下數據:設y與x的關系是我們所學過的某一種函數關系.(1)寫出y與x的函數關系式,并指出自變量x的取值范圍;(2)當銷售單價為多少時,銷售利潤最大?最大利潤是多少?
參考答案一、選擇題(每題4分,共48分)1、B【解析】根據特殊角的三角函數值求解.【詳解】.
故選:B.【點睛】本題考查了特殊角的三角函數值,解答本題的關鍵是熟記幾個特殊角的三角函數值.2、C【分析】根據已知及相似三角形的判定方法對各個選項進行分析,從而得到最后答案.【詳解】BADCAE,A,B,D都可判定,選項C中不是夾這兩個角的邊,所以不相似.故選C.【點睛】考查相似三角形的判斷方法,掌握相似三角形常用的判定方法是解題的關鍵.3、C【分析】根據比例的基本性質直接判斷即可.【詳解】由,根據比例性質,兩邊同時除以6,可得到,故選C.【點睛】本題考查比例的基本性質,掌握性質是解題關鍵.4、A【分析】結合點P的運動,將點P的運動路線分成O→A、A→B、B→C三段位置來進行分析三角形OMP面積的計算方式,通過圖形的特點分析出面積變化的趨勢,從而得到答案.【詳解】設∠AOM=α,點P運動的速度為a,當點P從點O運動到點A的過程中,S=a2?cosα?sinα?t2,由于α及a均為常量,從而可知圖象本段應為拋物線,且S隨著t的增大而增大;當點P從A運動到B時,由反比例函數性質可知△OPM的面積為k,保持不變,故本段圖象應為與橫軸平行的線段;當點P從B運動到C過程中,OM的長在減少,△OPM的高與在B點時相同,故本段圖象應該為一段下降的線段;故選A.點睛:本題考查了反比例函數圖象性質、銳角三角函數性質,解題的關鍵是明確點P在O→A、A→B、B→C三段位置時三角形OMP的面積計算方式.5、B【分析】先利用交點式求出拋物線解析式,則可對①進行判斷;利用拋物線的對稱性可對②進行判斷;利用拋物線與x軸的交點坐標為(0,0),(4,0)可對③④進行判斷;根據二次函數的性質求出x的值,即可對⑤進行判斷.【詳解】設拋物線解析式為y=ax(x﹣4),把(﹣1,5)代入得5=a×(﹣1)×(﹣1﹣4),解得:a=1,∴拋物線解析式為y=x2﹣4x,所以①正確;拋物線的對稱軸為直線x==2,所以②正確;∵拋物線與x軸的交點坐標為(0,0),(4,0),開口向上,∴當0<x<4時,y<0,所以③錯誤;拋物線與x軸的兩個交點間的距離是4,所以④正確;若A(x1,2),B(x2,3)是拋物線上兩點,由x2﹣4x=2,解得:x1=,由x2﹣4x=3,解得:x2=,若取x1=,x2=,則⑤錯誤.故選:B.【點睛】本題考查了拋物線與x軸的交點:把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程.也考查了二次函數的性質.6、C【分析】過D作AE的垂線交AE于F,交AC于D′,再過D′作AP′⊥AD,由角平分線的性質可得出D′是D關于AE的對稱點,進而可知D′P′即為DQ+PQ的最小值.【詳解】作D關于AE的對稱點D′,再過D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D關于AE的對稱點,AD′=AD=4,∴D′P′即為DQ+PQ的最小值,∵四邊形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值為22,故答案為C.【點睛】本題考查了正方形的性質以及角平分線的性質和全等三角形的判定和性質和軸對稱-最短路線問題,根據題意作出輔助線是解答此題的7、C【分析】利用圓周角與圓心角的關系得出∠COB=40°,再根據垂徑定理進一步可得出∠DOB=∠COB,最后即可得出答案.【詳解】∵∠A=20°,∴∠COB=2∠A=40°,∵CD⊥AB,OC=OD,∴∠DOB=∠COB=40°,∴∠COD=∠DOB+∠COB=80°.故選:C.【點睛】本題主要考查了圓周角、圓心角與垂徑定理的綜合運用,熟練掌握相關概念是解題關鍵.8、C【分析】先求出,再根據平行四邊形的性質可得AB∥CD,AB=CD,從而證出△BAF∽△DEF,,然后根據相似三角形的性質即可求出結論.【詳解】解:∵∴∴∵四邊形ABCD是平行四邊形∴AB∥CD,AB=CD∴△BAF∽△DEF,∴故選C.【點睛】此題考查的是平行四邊形的性質和相似三角形的判定及性質,掌握平行四邊形的性質、利用平行證相似和相似三角形的面積比等于相似比的平方是解決此題的關鍵.9、C【分析】先將該方程化為一般形式,即可得出結論.【詳解】解:先將該方程化為一般形式:.從而確定二次項系數為5,一次項系數為-6,常數項為8故選C.【考點】此題考查的是一元二次方程的項和系數,掌握一元二次方程的一般形式是解決此題的關鍵.10、C【解析】分析:根據菱形的性質得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根據勾股定理求出AB即可.詳解:∵四邊形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD=,∴AO=3,在Rt△AOB中,由勾股定理得:AB==5,故選C.點睛:本題考查了菱形的性質、勾股定理和解直角三角形,能熟記菱形的性質是解此題的關鍵.11、D【分析】根據垂徑定理,OC⊥AB,故OC平分AB,由AB=12,得出BC=6,再結合已知條件和勾股定理,求出OC即可.【詳解】解:∵OC⊥AB,AB=12∴BC=6∵∴OC=故選D.【點睛】本題主要考查了垂徑定理以及勾股定理,能夠熟悉定理以及準確的運算是解決本題的關鍵.12、C【分析】根據二次根式有意義的條件進行求解即可.【詳解】由題意得:x-1≥0,解得:x≥1,故選C.【點睛】本題考查了二次根式有意義的條件,熟知二次根式的被開方數為非負數是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】根據勾股定理求出直角三角形的斜邊,根據直角三角形的內切圓的半徑的求法確定出內切圓半徑,得到直徑.【詳解】解:根據勾股定理得:斜邊為=17,設內切圓半徑為r,由面積法r=3(步),即直徑為1步,
故答案為:1.考點:三角形的內切圓與內心.14、【解析】分析:根據銳角三角函數的定義,可得答案.詳解:如圖,由tanα==2,得a=2b,由勾股定理,得:c==b,sinα===.故答案為.點睛:本題考查了銳角三角函數,利用銳角三角函數的定義解題的關鍵.15、y=(x+2)2-1【分析】根據左加右減,上加下減的變化規律運算即可.【詳解】解:按照“左加右減,上加下減”的規律,向左平移2個單位,將拋物線y=x2先變為y=(x+2)2,再沿y軸方向向下平移1個單位拋物線y=(x+2)2即變為:y=(x+2)2?1,故答案為:y=(x+2)2?1.【點睛】本題考查了拋物線的平移,掌握平移規律是解題關鍵.16、【分析】由拋物線與x軸有兩個交點,可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.【點睛】本題考查了拋物線與x軸的交點,牢記“當△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關鍵.17、【分析】根據三角形的重心和平行線分線段成比例解答即可.【詳解】∵△ABC的中線AD、CE交于點G,
∴G是△ABC的重心,
∴,
∵GF∥BC,
∴,
∵DC=BC,
∴,
故答案為:.【點睛】此題考查三角形重心問題以及平行線分線段成比例,解題關鍵是根據三角形的重心得出比例關系.18、+2【分析】連接DE,因為BE的長度固定,所以要使△PBE的周長最小,只需要PB+PE的長度最小即可.【詳解】解:連結DE.∵BE的長度固定,∴要使△PBE的周長最小只需要PB+PE的長度最小即可,∵四邊形ABCD是菱形,∴AC與BD互相垂直平分,∴P′D=P′B,∴PB+PE的最小長度為DE的長,∵菱形ABCD的邊長為4,E為BC的中點,∠DAB=60°,∴△BCD是等邊三角形,又∵菱形ABCD的邊長為4,∴BD=4,BE=2,DE=,∴△PBE的最小周長=DE+BE=,故答案為:.【點睛】本題考查了菱形的性質、軸對稱以及最短路線問題、直角三角形斜邊上的中線性質;熟練掌握菱形的性質,并能進行推理計算是解決問題的關鍵.三、解答題(共78分)19、河寬為17米.【解析】由題意先證明?ABC∽?ADE,再根據相似三角形的對應邊成比例即可求得AB的長.【詳解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴?ABC∽?ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河寬為17米.【點睛】本題考查了相似三角形的應用,熟記相似三角形的判定與性質是解題的關鍵.20、(1)2;(2)2;(3)【分析】(1)由為的中點,結合三角形的中位線的性質得到從而可得答案;(2)如圖,過作于過作于結合(1)求解再證明利用相似三角形的性質可得答案;(3)過點分別作于點,于點,證明,可得再證明,利用相似三角形的性質求解同法求解從而可得答案.【詳解】解:(1)為的中點,故答案為:(2)如圖,過作于過作于由(1)同理可得:故答案為:(3)過點分別作于點,于點,∵,∴.∵,∴.∴.∴.∴.∵,,∴.∴∴.∵,∴.∵,∴.∴.同理可得:.∴.【點睛】本題考查的是矩形的性質,三角形中位線的判定與性質,相似三角形的判定與性質,掌握以上知識是解題的關鍵.21、(1)見解析;(2)y=x+4;(3).【分析】(1)根據矩形的性質和余角的性質得到∠A=∠ADC=∠DCB=90°,∠ADE=∠CDF,最后運用相似三角形的判定定理證明即可;(2)運用相似三角形的性質解答即可;(3)根據軸對稱圖形的性質可得DE=BE,再運用勾股定理可求出AE,DE的長,最后用余弦的定義解答即可.【詳解】(1)證明∵四邊形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四邊形EBFD為軸對稱圖形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案為:.【點睛】本題屬于相似形三角形綜合題,考查了相似三角形的判定和性質、矩形的性質、勾股定理、軸對稱圖形的性質等知識,靈活運用相似三角形的判定和性質是解答本題的關鍵.22、(1)見解析;(2)①6,②6.【分析】(1)根據切線的性質得∠OBQ=90°,再根據平行線的性質得∠APO=∠POQ,∠OAP=∠BOQ,加上∠OPA=∠OAP,則∠POQ=∠BOQ,于是根據“SAS”可判斷△BOQ≌△POQ;(2)①利用△BOQ≌△POQ得到∠OPQ=∠OBQ=90°,由于OB=OP,所以當∠BOP=90°,四邊形OPQB為正方形,此時點C、點E與點O重合,于是PE=PO=6;②根據菱形的判定,當OC=AC,PC=EC,四邊形AEOP為菱形,則OC=OA=3,然后利用勾股定理計算出PC,從而得到PE的長.【詳解】(1)證明:∵BM切⊙O于點B,∴OB⊥BQ,∴∠OBQ=90°,∵PA∥OQ,∴∠APO=∠POQ,∠OAP=∠BOQ,而OA=OP,∴∠OPA=∠OAP,∴∠POQ=∠BOQ,在△BOQ和△POQ中,∴△BOQ≌△POQ;(2)解:①∵△BOQ≌△POQ,∴∠OPQ=∠OBQ=90°,當∠BOP=90°,四邊形OPQB為矩形,而OB=OP,則四邊形OPQB為正方形,此時點C、點E與點O重合,PE=PO=AB=6;②∵PE⊥AB,∴當OC=AC,PC=EC,四邊形AEOP為菱形,∵OC=OA=3,∴PC=,∴PE=2PC=6.故答案為6,6.【點睛】本題考查了切線的性質、全等三角形的判定與性質和菱形、正方形的判定方法;綜合應用所學知識是解答本題的關鍵.23、(1)﹣1,1;(2)①見解析;②函數圖象是中心對稱圖形;(3)【分析】(1)把(1,0),(2,1)代入y=ax2+bx-3構建方程組即可解決問題.
(2)利用描點法畫出函數圖象,根據中心對稱的定義即可解決問題.
(3)求出直線y=x+t與兩個二次函數只有一個交點時t的值即可判斷.【詳解】解:(1)把(1,0),(2,1)代入y=ax2+bx﹣3得,解得,故答案為:﹣1,1.(2)①描點連線畫出函數圖象,如圖所示;②該函數圖象是中心對稱圖形.(3)由,消去y得到2x2﹣x﹣2﹣2t=0,當△=0時,1+16+16t=0,,由消去y得到2x2﹣7x+2t+6=0,當△=0時,19﹣16t﹣18=0,,觀察圖象可知:當時,直線與該函數圖象有三個交點.【點睛】本題考查中心對稱,二次函數的性質,一元二次方程的根的判別式等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.24、(1)①見解析;②∠DCE=110°;(1)∠DCE=90°,BD1+CD1=DE1.證明見解析;(3)①(1)中的結論還成立,②AE=.【分析】(1)①根據等邊三角形的性質就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進而就可以得出△ABD≌△ACE,即可得出結論;②由△ABD≌△ACE,以及等邊三角形的性質,就可以得出∠DCE=110°;
(1)先判定△ABD≌△ACE(SAS),得出∠B=∠ACE=45°,BD=CE,在Rt△DCE中,根據勾股定理得出CE1+CD1=DE1,即可得到BD1+CD1=DE1;
(3)①運用(1)中的方法得出BD1+CD1=DE1;②根據Rt△BCE中,BE=10,BC=6,求得進而得出CD=8-6=1,在Rt△DCE中,求得最后根據△ADE是等腰直角三角形,即可得出AE的長.【詳解】(1)①如圖1,∵△ABC和△ADE是等邊三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=110°;(1)∠DCE=90°,BD1+CD1=DE1.證明:如圖1,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD與△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE1+CD1=DE1,∴BD1+CD1=DE1;(3)①(1)中的結論還成立.
理由:如圖3,∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE,
在△ABD與△ACE中,∴△ABD≌△ACE(SAS),
∴∠ABC=∠ACE=45°,BD=CE,
∴∠ABC+∠ACB=∠ACE+∠ACB=90°,
∴∠BCE=90°=∠ECD,
∴Rt△DCE中,CE1+CD1=DE1,
∴BD1+CD1=DE1;②∵Rt△BCE中,BE=10,BC=6,∴BD=CE=8,
∴CD=8-6=1,
∴Rt△DCE中,∵△ADE是等腰直角三角形,【點睛】本題屬于三角形綜合題,主要考查了全等三角形的判定與性質,等邊三角形的性質,等腰直角三角形的性質以及勾股定理的綜合應用,解決問題的關鍵是掌握全等三角形的對應邊相等,對應角相等.解題時注意:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.25、(1)y=﹣x+5;(2)點F(,);四邊形AFDE的面積的最大值為;(3)點N(0,),點P的運動路徑最短距離=2+.【分析】(1)先求出點A,點C坐標,用待定系數法可求解析式;(2)先求出點D坐標,設點F(x,﹣x2+4x+5),則點E坐標為(x,﹣x+5),即可求EF=﹣x2+5x,可求四邊形AFDE的面積,由二次函數的性質可求解;(3)由動點P的運動路徑=FM+MN+NC=GM+2+MH,則當點G,點M,點H三點共線時,動點P的運動路徑最小,由兩點距離公式可求解.【詳解】解:(1)∵拋物線y=﹣x2+4x+5與y軸交于點A,與x軸的正半軸交于點C.∴當x=0時,y=5,則點A(0,5)當y=0時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省延邊朝鮮族自治州汪清縣第六中學2025年高三高考模擬沖刺卷(提優卷)(四)化學試題含解析
- 上海市浦東新區上海民辦張江集團校2025屆初三畢業班教學質量檢測試題數學試題含解析
- 江蘇省鹽城市濱海縣蔡橋初級中學2025年高三下學期質量調查(一)物理試題含解析
- 山西省長治二中2024-2025學年全國高三模擬考(二)全國卷英語試題試卷含解析
- 瀝青路面施工方案培訓
- 湛江市大成中學高二上學期第四次月考物理試題
- 2025水產養殖承包合同范本
- 2025建筑材料購銷合同模板下載
- 2025建筑材料采購銷售合同模板
- 2025維修承包合同2
- (高清版)TDT 1036-2013 土地復墾質量控制標準
- 人際交往與溝通課件第六章 人際交往禮儀
- 社會穩定風險評估 投標方案(技術標)
- 銷售銷售數據分析培訓講義
- 超密集組網技術及其應用
- 兩位數除以一位數(有余數)計算題200道
- 產后早開奶好處健康宣教
- 人效分析報告
- 2024屆江蘇省期無錫市天一實驗校中考聯考英語試題含答案
- 內鏡室院感培訓知識
- 北師大版數學三年級下冊《長方形的面積》
評論
0/150
提交評論