




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 一元一次不等式組典型例題例題 1 解不等式組x 1 x2(1)2 x 2 3 x 6.(2)例題 2解不等式3x 2 2 x 3, 4x 8,5x 1 29.例題 3解不等式組:x 1 2x 1x 23(1)(2)例題 4解以下不等式組,并把它們的解集在數(shù)軸上表示出來x 2( x 3) 4, (1) x 1( x 3) ; (2) 2 4例題 5例題 6例題 7解不等式 1 3 x 5解不等式 4 1 3 x 13解不等式 5 2 x 3 8 例題 8解不等式 12 x 134.例題 9同時(shí)成立?當(dāng) x 取哪些整數(shù)時(shí),不等式 2( x 2) x 5 與不等式 3( x 2) 9 2 x 例題
2、 10解不等式組x k 02 x114x(1)(2)x m 1例題 11 假設(shè)不等式組 無解,那么 m 的取值范圍是什么?x 2 m 1例題 12 假設(shè)關(guān)于 x 的不等式組x 4 x 13 2 x a 0(1)(2)的解集為 x 2 ,那么 a 的取值范圍是什么?例題 1 分析參考答案解一元一次不等式組時(shí),先將不等式組中的每個(gè)不等式的解集求出來,然后在數(shù)軸上找出它們的解集的公共局部解答由1式,得 x 2解不等式2,得 x 4而這兩個(gè)不等式的解集沒有共同的局部,因此,這個(gè)不等式組無解例題 2分析不等式組的解集就是不等式組中所有不等式解集的公共局部,解不等式組就是分別求出各個(gè)不等式的解集,再求出這
3、個(gè)公共局部解答不等式 3 x 2 2 x 3 的解集為 x 5 不等式 4 x 8 的解集為 x 2 不等式 5 x 1 29 的解集為 x 6 這個(gè)不等式組的解集為 2 x 5 例題 3 解答解不等式(2)得解不等式(1)得 x 6 ,1x ,3在同一條數(shù)軸上表示不等式(1)與(2)的解集,如下:1因此,原不等式組的解集為 x 6 .3例題 4 分析根據(jù)一元一次不等式的解法,先分別求出不等式組中各個(gè)不等式的解集,然后借助數(shù)軸求出不等式的解集 解答 1由1得 x 2 x 6 4 ,即 x 2, 所以 x 2 ;由2得 2 x 4 x 12 1 ,即 2 x 11 ,所以 x 112把它們的解集
4、在數(shù)軸上表示為:因此,原不等式組的解集為 2 x 112例題 5分析這個(gè)不等式的意思是說 3 x 比 1 大,比 5 小,就是求 3 3x 1 3 x 5,這個(gè)不等式組的解集把此問題轉(zhuǎn)化為不等式組是其關(guān)鍵解答由題意,得不等式組3x 1 3 x 5解這個(gè)不等式組得2 x 4 例題 6解答一原不等式移項(xiàng),合并同類項(xiàng),得 3 3x 12,各項(xiàng)除以3,得 1 x 4解答二即4 x 1原不等式可化為4 1 3 x; 1 3 x 13.說明不等式 4 1 3 x 的解集是 x 1不等式 1 3 x 13 的解集是 x 4所以原不等式的解集是 4 x 1該不等式既可按不等式既可按不等式的性質(zhì)、變形、求解,也
5、可以先化成不等式組求解例題 7 分析 此不等式的解集與不等式組 2 x 3 5, 2 x 3 8的解集相同因此,解這類不等式時(shí),一般是先化成不等式組,再求解但此不等式左、右兩邊都不 含 x ,因此可以直接求解解答不等式的兩邊都減去 3,得 8 2 x 5 ,不等式的兩邊都除以 2,得不等式的解集為 4 x 52例題 8 分析 這個(gè)不等式的意思是說2x 11 (1)就是求2 x 1 (2) 432 x 13不小于-1,比 4 小,這個(gè)不等式組的解集,把此問題轉(zhuǎn)化為不等式組是其關(guān)鍵 .也可直接利用不等式 的性質(zhì)來求解. 解答12 x 134. 同解于2x 1 32 x 1314(1)(2)解(1)
6、得 x 2,解(2)得 x 112,因此,原不等式解集為 2 x 112另解直接利用不等式的性質(zhì)12 x 134,3 2 x 1 12,4 2 x 11,11 2 x .2例題 9 分析 條件的整數(shù)值先求出兩個(gè)不等式解集的公共局部,再由公共局部求出符合解答解不等式 2( x 2) x 5 ,得x 1 解不等式 3( x 2) 9 2 x ,得x 3這兩個(gè)不等式的解集的公共局部為3 x 1 ,滿足 3 x 1 的整數(shù)為 x 2,1和 0因此當(dāng)整數(shù) x 2,1或 0 時(shí),兩個(gè)不等式都成立例題 10 類寫出其解集.分析當(dāng)不等式組中含有字母的系數(shù)時(shí) ,要注意對(duì)解集的討論 , 分解答解不等式(1)得x k,解不等式(2)得x 4 ,原不等式組可化為x k ,x 4.當(dāng) k 4 時(shí),原不等式組的解集為 x k .當(dāng) k 4 時(shí),原不等式組的解集為 x 4 .例題 11 分析不等式組的解集,求不等式中所含字母的取值范圍,必須根據(jù)不等式組的四種根本類型來分析,此題關(guān)鍵是兩個(gè)不等式的解集無公共局部解答說明軸求解要使不等式組無解,故必須 m 1 2 m 1 ,從而解得 m 2,故 m 2 此題要熟悉 “小小大大找不到的解集確定方法,當(dāng)然也可借助于數(shù)例題 12解答由可解出 x 2 ,而由可解出 x a,而不等式組的解集為 x 2 ,故 a 2 ,即 a 2說明此題給出不等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 護(hù)理管理者領(lǐng)導(dǎo)力培訓(xùn)心得體會(huì)
- 青少年閱讀興趣提升活動(dòng)計(jì)劃
- 九年級(jí)體育下學(xué)期課外活動(dòng)安排計(jì)劃
- 護(hù)理帶教老師的溝通技巧
- 2025年環(huán)保行業(yè)安全生產(chǎn)月心得體會(huì)
- 2025年高考化學(xué)知識(shí)競(jìng)賽準(zhǔn)備計(jì)劃
- 幼兒園體弱兒行為管理計(jì)劃
- 食品加工企業(yè)安全管理與防范措施
- 心理輔導(dǎo)課程分層設(shè)計(jì)心得體會(huì)
- 商混合同范本3篇
- 2025年刑法模擬檢測(cè)試卷(罪名認(rèn)定與刑罰適用)
- 健康廚房-家庭飲食指南
- 初中生物重要識(shí)圖填空速記54個(gè)-2025年中考生物一輪復(fù)習(xí)知識(shí)清單
- T-SCCX A 0010-2024 T-CQXS A 0001-2024 信息技術(shù)應(yīng)用創(chuàng)新項(xiàng)目建設(shè)規(guī)范
- 合作合同范本 英文
- 四年級(jí)數(shù)學(xué)上冊(cè)口算題1000道
- 2025年中國(guó)腰果行業(yè)市場(chǎng)深度分析及發(fā)展前景預(yù)測(cè)報(bào)告
- 工業(yè)機(jī)器人集成應(yīng)用(ABB) 高級(jí) 課件 1.2.3 PLC設(shè)備選型方法與工作站PLC選型
- 《危險(xiǎn)作業(yè)審批制度》知識(shí)培訓(xùn)
- 新國(guó)際物流知識(shí)培訓(xùn)課件
- 關(guān)節(jié)置換感染預(yù)防與控制
評(píng)論
0/150
提交評(píng)論