




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、初中數學知識點總結第一章 實數考點一、實數的概念及分類1、實數的分類 正有理數 有理數 零 有限小數和無限循環小數實數 負有理數 正無理數 無理數 無限不循環小數 負無理數2、無理數在理解無理數時,要抓住“無限不循環”這一時之,歸納起來有四類:(1)開方開不盡的數,如等; (2)有特定意義的數,如圓周率,或化簡后含有的數,如+8等;(3)有特定結構的數,如0.1010010001等; (4)某些三角函數,如sin60o等考點二、實數的倒數、相反數和絕對值1、相反數:實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對
2、稱,如果a與b互為相反數,則有a+b=0,a=b,反之亦成立。2、絕對值:一個數的絕對值就是表示這個數的點與原點的距離,|a|0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a0;若|a|=-a,則a0。正數大于零,負數小于零,正數大于一切負數,兩個負數,絕對值大的反而小。3、倒數:如果a與b互為倒數,則有ab=1,反之亦成立。倒數等于本身的數是1和-1。零沒有倒數。考點三、平方根、算數平方根和立方根1、平方根:如果一個數的平方等于a,那么這個數就叫做a的平方根(或二次方跟)。一個數有兩個平方根,他們互為相反數;零的平方根是零;負數沒有平方根。正數a的平方根記做“”。2、算術平方根
3、:正數a的正的平方根叫做a的算術平方根,記作“”。 0正數和零的算術平方根都只有一個,零的算術平方根是零。 注意的雙重非負性: 3、立方根:如果一個數的立方等于a,那么這個數就叫做a 的立方根(或a 的三次方根)。一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。注意:,這說明三次根號內的負號可以移到根號外面。考點四、科學記數法和近似數1、有效數字:一個近似數四舍五入到哪一位,就說它精確到哪一位,這時,從左邊第一個不是零的數字起到右邊精確的數位止的所有數字,都叫做這個數的有效數字。2、科學記數法:把一個數寫做的形式,其中,n是整數,這種記數法叫做科學記數法。考點五、實數大小的
4、比較1、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。2、實數大小比較的幾種常用方法(1)數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。(2)求差比較:設a、b是實數, (3)求商比較法:設a、b是兩正實數,(4)絕對值比較法:設a、b是兩負實數,則。(5)平方法:設a、b是兩負實數,則。考點六、實數的運算1、加法交換律 2、加法結合律 3、乘法交換律 4、乘法結合律 5、乘法對加法的分配律 6、實數的運算順序: 先算乘方,再算乘除,最后算加減,如果有括號,就
5、先算括號里面的。第二章 代數式考點一、整式的有關概念1、代數式:用運算符號把數或表示數的字母連接而成的式子叫做代數式。單獨的一個數或一個字母也是代數式。2、單項式: 只含有數字與字母的積的代數式叫做單項式。注意:單項式是由系數、字母、字母的指數構成的,其中系數不能用帶分數表示,如,這種表示就是錯誤的,應寫成。一個單項式中,所有字母的指數的和叫做這個單項式的次數。如是6次單項式。考點二、多項式1、多項式:幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。單項式和多項式統稱整式。用數值代替代數式中的字母,按
6、照代數式指明的運算,計算出結果,叫做代數式的值。注意:(1)求代數式的值,一般是先將代數式化簡,然后再將字母的取值代入。 (2)求代數式的值,有時求不出其字母的值,需要利用技巧,“整體”代入。2、同類項:所有字母相同,并且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。3、去括號法則(1)括號前是“+”,把括號和它前面的“+”號一起去掉,括號里各項都不變號。(2)括號前是“”,把括號和它前面的“”號一起去掉,括號里各項都變號。4、整式的運算法則整式的加減法:(1)去括號;(2)合并同類項。整式的乘法: 整式的除法:注意:(1)單項式乘單項式的結果仍然是單項式。(2)單項式與多項式
7、相乘,結果是一個多項式,其項數與因式中多項式的項數相同。(3)計算時要注意符號問題,多項式的每一項都包括它前面的符號,同時還要注意單項式的符號。(4)多項式與多項式相乘的展開式中,有同類項的要合并同類項。(5)公式中的字母可以表示數,也可以表示單項式或多項式。(6)(7)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加,單項式除以多項式是不能這么計算的。考點三、因式分解1、因式分解:把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做把這個多項式分解因式。2、因式分解的常用方法(1)提公因式法:(2)運用公式法:, , (3)分組分解法:(4)十字相乘法
8、:3、因式分解的一般步驟:(1)如果多項式的各項有公因式,那么先提取公因式。(2)在各項提出公因式以后或各項沒有公因式的情況下,觀察多項式的項數:2項式可以嘗試運用公式法分解因式;3項式可以嘗試運用公式法、十字相乘法分解因式;4項式及4項式以上的可以嘗試分組分解法分解因式(3)分解因式必須分解到每一個因式都不能再分解為止。考點四、分式1、分式的概念:一般地,用A、B表示兩個整式,AB就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通稱為有理式。2、分式的性質(1)分式的基本性質:分式的分子和分母都乘以(或除以)同一個不等于零的整式,分式
9、的值不變。(2)分式的變號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變。3、分式的運算法則 考點五、二次根式1、二次根式:式子叫做二次根式,二次根式必須滿足:含有二次根號“”;被開方數a必須是非負數。2、最簡二次根式概念:若二次根式滿足:被開方數的因數是整數,因式是整式;被開方數中不含能開得盡方的因數或因式,這樣的二次根式叫做最簡二次根式。化二次根式為最簡二次根式的方法和步驟:(1)如果被開方數是分數(包括小數)或分式,先利用商的算數平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡。(2)如果被開方數是整數或整式,先將他們分解因數或因式,然后把能開得盡方的因
10、數或因式開出來。3、同類二次根式:幾個二次根式化成最簡二次根式以后,如果被開方數相同,這幾個二次根式叫做同類二次根式。4、二次根式的性質(1) (2) (3) (4)5、二次根式混合運算:二次根式的混合運算與實數中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)。第三章 方程(組)考點一、一元一次方程的概念1、方程:含有未知數的等式叫做方程。2、方程的解:能使方程兩邊相等的未知數的值叫做方程的解。3、等式的性質(1)等式的兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式。(2)等式的兩邊都乘以(或除以)同一個數(除數不能是零),所得結果仍是等式。4、一元一
11、次方程只含有一個未知數,并且未知數的最高次數是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的標準形式,a是未知數x的系數,b是常數項。考點二、一元二次方程 1、一元二次方程:含有一個未知數,并且未知數的最高次數是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式:,特征:等式左邊十一個關于未知數x的二次多項式,等式右邊是零,其中叫做二次項,a叫做二次項系數;bx叫做一次項,b叫做一次項系數;c叫做常數項。考點三、一元二次方程的解法1、直接開平方法:利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如的一元二次方程。根據平方根的定義可知,是
12、b的平方根,當時,當b0b0 y 0 x圖像經過一、二、三象限,y隨x的增大而增大。b0 y 0 x圖像經過一、三、四象限,y隨x的增大而增大。k0 y 0 x圖像經過一、二、四象限,y隨x的增大而減小b0時,圖像經過第一、三象限,y隨x的增大而增大;(2)當k0時,y隨x的增大而增大(2)當k0k0時,函數圖像的兩個分支分別在第一、三象限。在每個象限內,y隨x 的增大而減小。x的取值范圍是x0, y的取值范圍是y0;當k0a0 y 0 x y 0 x性質(1)拋物線開口向上,并向上無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側,即當x時,y隨x的增大而增大,簡記左減右增
13、;(4)拋物線有最低點,當x=時,y有最小值,(1)拋物線開口向下,并向下無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側,即當x時,y隨x的增大而減小,簡記左增右減;(4)拋物線有最高點,當x=時,y有最大值,2、二次函數中,的含義:表示開口方向:0時,拋物線開口向上;0時,圖像與x軸有兩個交點;當=0時,圖像與x軸有一個交點;當0時,圖像與x軸沒有交點。補充:兩點間距離公式(當遇到沒有思路的題時,可用此方法拓展思路,以尋求解題方法)AB如圖:點A坐標為(x1,y1)點B坐標為(x2,y2)則AB間的距離,即線段AB的長度為 2、函數平移規律:左加右減、上加下減第八章 圖
14、形的初步認識考點一、直線、射線和線段1、幾何圖形:從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。2、點、線、面、體(1)幾何圖形的組成點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。體:幾何體也簡稱體。(2)點動成線,線動成面,面動成體。3、直線的概念:一根拉得很緊的線,就給我們以直線的形象,直線是直的,并且是向兩方無限延伸的。4、射線的概念:直線上一點和它一旁的部分叫做射線。
15、這個點叫做射線的端點。5、線段的概念:直線上兩個點和它們之間的部分叫做線段。這兩個點叫做線段的端點。6、點、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點可以用一個大寫字母表示。一條直線可以用一個小寫字母表示。一條射線可以用端點和射線上另一點來表示。一條線段可用它的端點的兩個大寫字母來表示。注意:(1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。(2)直線和射線無長度,線段有長度。(3)直線無端點,射線有一個端點,線段有兩個端點。(4)點和直線的位置關系有線面兩種:點在直線上,或者說直線經過這個點。點在直線外,或者說直線不經過這個點。7、直線的性質(1)直
16、線公理:經過兩個點有一條直線,并且只有一條直線。它可以簡單地說成:過兩點有且只有一條直線。(2)過一點的直線有無數條。(3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。(5)兩條不同的直線至多有一個公共點。8、線段的性質(1)線段公理:所有連接兩點的線中,線段最短。也可簡單說成:兩點之間線段最短。(2)連接兩點的線段的長度,叫做這兩點的距離。(3)線段的中點到兩端點的距離相等。(4)線段的大小關系和它們的長度的大小關系是一致的。9、線段垂直平分線的性質定理及逆定理垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質定理:線段
17、垂直平分線上的點和這條線段兩個端點的距離相等。逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。考點二、角1、角的相關概念有公共端點的兩條射線組成的圖形叫做角,這個公共端點叫做角的頂點,這兩條射線叫做角的邊。當角的兩邊在一條直線上時,組成的角叫做平角。平角的一半叫做直角;小于直角的角叫做銳角;大于直角且小于平角的角叫做鈍角。如果兩個角的和是一個直角,那么這兩個角叫做互為余角,其中一個角叫做另一個角的余角。如果兩個角的和是一個平角,那么這兩個角叫做互為補角,其中一個角叫做另一個角的補角。2、角的表示角可以用大寫英文字母、阿拉伯數字或小寫的希臘字母表示,具體的有一下四種表示方法:用
18、數字表示單獨的角,如1,2,3等。用小寫的希臘字母表示單獨的一個角,如,等。用一個大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如B,C等。用三個大寫英文字母表示任一個角,如BAD,BAE,CAE等。注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側。3、角的度量角的度量有如下規定:把一個平角180等分,每一份就是1度的角,單位是度,用“”表示,1度記作“1”,n度記作“n”。把1的角60等分,每一份叫做1分的角,1分記作“1”。把1 的角60等分,每一份叫做1秒的角,1秒記作“1”。1=60=60”4、角的性質(1)角的大小與邊的長短無關,只與構成角的兩
19、條射線的幅度大小有關。;(2)角的大小可以度量,可以比較;(3)角可以參與運算。5、角的平分線及其性質:一條射線把一個角分成兩個相等的角,這條射線叫做這個角的平分線。角的平分線有下面的性質定理:(1)角平分線上的點到這個角的兩邊的距離相等。(2)到一個角的兩邊距離相等的點在這個角的平分線上。考點三、相交線1、相交線中的角兩條直線相交,可以得到四個角,我們把兩條直線相交所構成的四個角中,有公共頂點但沒有公共邊的兩個角叫做對頂角。我們把兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角叫做臨補角。臨補角互補,對頂角相等。直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF
20、所截),構成八個角。其中1與5這兩個角分別在AB,CD的上方,并且在EF的同側,像這樣位置相同的一對角叫做同位角;3與5這兩個角都在AB,CD之間,并且在EF的異側,像這樣位置的兩個角叫做內錯角;3與6在直線AB,CD之間,并側在EF的同側,像這樣位置的兩個角叫做同旁內角。2、垂線兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。直線AB,CD互相垂直,記作“ABCD”(或“CDAB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。垂線的性質:性質1:過一點有且只有一條直線與已知直線垂直;性質2:直線外一點與直線上各
21、點連接的所有線段中,垂線段最短。簡稱:垂線段最短。考點四、平行線1、平行線的概念在同一個平面內,不相交的兩條直線叫做平行線。平行用符號“”表示,如“ABCD”,讀作“AB平行于CD”。同一平面內,兩條直線的位置關系只有兩種:相交或平行。注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。(2)當遇到線段、射線平行時,指的是線段、射線所在的直線平行。2、平行線公理及其推論平行公理:經過直線外一點,有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。3、平行線的判定:平行線的判定公理:兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位
22、角相等,兩直線平行。平行線的兩條判定定理:(1)兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。簡稱:內錯角相等,兩直線平行。(2)兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。簡稱:同旁內角互補,兩直線平行。補充平行線的判定方法:(1)平行于同一條直線的兩直線平行。(2)垂直于同一條直線的兩直線平行。(3)平行線的定義。4、平行線的性質(1)兩直線平行,同位角相等。(2)兩直線平行,內錯角相等。(3)兩直線平行,同旁內角互補。考點五、命題、定理、證明1、命題的概念:判斷一件事情的語句,叫做命題。 理解:命題的定義包括兩層含義:(1)命題必須是個完整的句子;(2)這個句
23、子必須對某件事情做出判斷。2、命題的分類(按正確、錯誤與否分) 真命題(正確的命題)命題 假命題(錯誤的命題)所謂正確的命題就是:如果題設成立,那么結論一定成立的命題。所謂錯誤的命題就是:如果題設成立,不能證明結論總是成立的命題。3、公理人們在長期實踐中總結出來的得到人們公認的真命題,叫做公理。4、定理:用推理的方法判斷為正確的命題叫做定理。5、證明:判斷一個命題的正確性的推理過程叫做證明。6、證明的一般步驟(1)根據題意,畫出圖形。(2)根據題設、結論、結合圖形,寫出已知、求證。(3)經過分析,找出由已知推出求證的途徑,寫出證明過程。考點六、投影與視圖1、投影投影的定義:用光線照射物體,在地
24、面上或墻壁上得到的影子,叫做物體的投影。平行投影:由平行光線(如太陽光線)形成的投影稱為平行投影。中心投影:由同一點發出的光線所形成的投影稱為中心投影。2、視圖當我們從某一角度觀察一個實物時,所看到的圖像叫做物體的一個視圖。物體的三視圖特指主視圖、俯視圖、左視圖。主視圖:在正面內得到的由前向后觀察物體的視圖,叫做主視圖。俯視圖:在水平面內得到的由上向下觀察物體的視圖,叫做俯視圖。左視圖:在側面內得到的由左向右觀察物體的視圖,叫做左視圖,有時也叫做側視圖。第九章 三角形考點一、三角形1三角形的概念:由不在同意直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰
25、兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內角,簡稱三角形的角。2、三角形中的主要線段(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。3、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫做三角形的穩定性。三角形的這個性質在生產生活中應用很廣,需要穩定的東西一般都制成三角形的形狀。4、三角形的特性與表示三角形有下面三個特性:(1)三角形有三條線段(2)三條線段
26、不在同一直線上 三角形是封閉圖形(3)首尾順次相接三角形用符號“”表示,頂點是A、B、C的三角形記作“ABC”,讀作“三角形ABC”。5、三角形的分類三角形按邊的關系分類如下: 不等邊三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等邊三角形三角形按角的關系分類如下: 直角三角形(有一個角為直角的三角形)三角形 銳角三角形(三個角都是銳角的三角形) 斜三角形 鈍角三角形(有一個角為鈍角的三角形)把邊和角聯系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。6、三角形的三邊關系定理及推論(1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之
27、差小于第三邊。(2)三角形三邊關系定理及推論的作用:判斷三條已知線段能否組成三角形。當已知兩邊時,可確定第三邊的范圍。證明線段不等關系。7、三角形的內角和定理及推論三角形的內角和定理:三角形三個內角和等于180。推論:直角三角形的兩個銳角互余。三角形的一個外角等于和它不相鄰的來兩個內角的和。三角形的一個外角大于任何一個和它不相鄰的內角。注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。8、三角形的面積:三角形的面積=底高考點二、全等三角形 1、全等三角形的概念能夠完全重合的兩個圖形叫做全等形。能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂
28、點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點的兩邊所成的角。2、全等三角形的表示和性質全等用符號“”表示,讀作“全等于”。如ABCDEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、三角形全等的判定三角形全等的判定定理:(1)邊角邊定理:有兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)(2)角邊角定理:有兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)(3)邊邊邊定理:有三邊對應相等的兩個三角形全等(可簡寫成
29、“邊邊邊”或“SSS”)。直角三角形全等的判定:對于特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)4、全等變換只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。(2)對稱變換:將圖形沿某直線翻折180,這種變換叫做對稱變換。(3)旋轉變換:將圖形繞某點旋轉一定的角度到另一個位置,這種變換叫做旋轉變換。考點三、等腰三角形1、等腰三角形的性質(1)等腰三角形的性質定理及推論:定理:等腰三角形的兩個底角相
30、等(簡稱:等邊對等角)推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個角都相等,并且每個角都等于60。(2)等腰三角形的其他性質:等腰直角三角形的兩個底角相等且等于45等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為鈍角(或直角)。等腰三角形的三邊關系:設腰長為a,底邊長為b,則a等腰三角形的三角關系:設頂角為頂角為A,底角為B、C,則 A=1802B,B=C=2、等腰三角形的判定等腰三角形的判定定理及推論:定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定
31、理常用于證明同一個三角形中的邊相等。推論1:三個角都相等的三角形是等邊三角形推論2:有一個角是60的等腰三角形是等邊三角形。推論3:在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半。等腰三角形的性質與判定等腰三角形性質等腰三角形判定中線1、等腰三角形底邊上的中線垂直底邊,平分頂角;2、等腰三角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。1、兩邊上中線相等的三角形是等腰三角形;2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形角平分線1、等腰三角形頂角平分線垂直平分底邊;2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端
32、點的距離相等。1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。高線1、等腰三角形底邊上的高平分頂角、平分底邊;2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。1、如果一個三角形一邊上的高平分這條邊(平分這條邊的對角),那么這個三角形是等腰三角形;2、有兩條高相等的三角形是等腰三角形。角等邊對等角等角對等邊邊底的一半腰長周長的一半兩邊相等的三角形是等腰三角形4、三角形中的中位線連接三角形兩邊中點的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構成一個新的三角形。
33、(2)要會區別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關系:可以證明兩條直線平行。數量關系:可以證明線段的倍分關系。常用結論:任一個三角形都有三條中位線,由此有: 結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結論2:三條中位線將原三角形分割成四個全等的三角形。 結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結論4:三角形一條中線和與它相交的中位線互相平分。 結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。第十章 四邊形考點一、四邊形的相關概念 1、四邊形:在同一平面內,由
34、不在同一直線上的四條線段首尾順次相接的圖形叫做四邊形。2、凸四邊形:把四邊形的任一邊向兩方延長,如果其他個邊都在延長所得直線的同一旁,這樣的四邊形叫做凸四邊形。3、對角線:在四邊形中,連接不相鄰兩個頂點的線段叫做四邊形的對角線。4、四邊形的不穩定性:三角形的三邊如果確定后,它的形狀、大小就確定了,這是三角形的穩定性。但是四邊形的四邊確定后,它的形狀不能確定,這就是四邊形所具有的不穩定性,它在生產、生活方面有著廣泛的應用。5、四邊形的內角和定理及外角和定理四邊形的內角和定理:四邊形的內角和等于360。四邊形的外角和定理:四邊形的外角和等于360。多邊形的內角和定理:n邊形的內角和180;多邊形的
35、外角和定理:任意多邊形的外角和3606、多邊形的對角線條數的計算公式:設多邊形的邊數為n,則多邊形的對角線條數為。考點二、平行四邊形1、平行四邊形的概念:兩組對邊分別平行的四邊形叫做平行四邊形。平行四邊形用符號“ABCD”表示,如平行四邊形ABCD記作“ABCD”,讀作“平行四邊形ABCD”。2、平行四邊形的性質(1)平行四邊形的鄰角互補,對角相等。(2)平行四邊形的對邊平行且相等。 推論:夾在兩條平行線間的平行線段相等。(3)平行四邊形的對角線互相平分。(4)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積。3、平
36、行四邊形的判定(1)定義:兩組對邊分別平行的四邊形是平行四邊形(2)定理1:兩組對角分別相等的四邊形是平行四邊形;定理2:兩組對邊分別相等的四邊形是平行四邊形;定理3:對角線互相平分的四邊形是平行四邊形;定理4:一組對邊平行且相等的四邊形是平行四邊形4、兩條平行線的距離:兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。5、平行四邊形的面積:=底邊長高=ah考點三、矩形1、矩形的概念有一個角是直角的平行四邊形叫做矩形。2、矩形的性質(1)具平行四邊形的一切性質;(2)矩形的四個角都是直角;(3)矩形的對角線相等;(4)矩形是軸對稱圖形3、矩形
37、的判定(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形;定理2:對角線相等的平行四邊形是矩形4、矩形的面積:S矩形=長寬=ab考點四、菱形1、菱形的概念:有一組鄰邊相等的平行四邊形叫做菱形2、菱形的性質:(1)具有平行四邊形的一切性質; (2)菱形的四條邊相等;(3)菱形的對角線互相垂直,并且每一條對角線平分一組對角;(4)菱形是軸對稱圖形3、菱形的判定:(1)定義:有一組鄰邊相等的平行四邊形是菱形(2)定理1:四邊都相等的四邊形是菱形;定理2:對角線互相垂直的平行四邊形是菱形4、菱形的面積:S菱形=底邊長高=兩條對角線乘積的一半考點五、正方形 1、正方形
38、的概念:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。2、正方形的性質(1)具有平行四邊形、矩形、菱形的一切性質(2)正方形的四個角都是直角,四條邊都相等(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角(4)正方形是軸對稱圖形,有4條對稱軸(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。3、正方形的判定(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:先證它是矩形,再證有一組鄰邊相等。 先證它是菱形,再證有一個角是直角。(2)
39、判定一個四邊形為正方形的一般順序如下:先證明它是平行四邊形;再證明它是菱形(或矩形);最后證明它是矩形(或菱形)4、正方形的面積:設正方形邊長為a,對角線長為b, S正方形=考點六、梯形 1、梯形的相關概念一組對邊平行而另一組對邊不平行的四邊形叫做梯形。梯形中平行的兩邊叫做梯形的底,通常把較短的底叫做上底,較長的底叫做下底。梯形中不平行的兩邊叫做梯形的腰。梯形的兩底的距離叫做梯形的高。兩腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分類如下: 一般梯形梯形 直角梯形 特殊梯形 等腰梯形2、梯形的判定(1)定義:一組對邊平行而另一組對邊不平行的四邊形是梯形。 (2)一組
40、對邊平行且不相等的四邊形是梯形。3、等腰梯形的性質(1)等腰梯形的兩腰相等,兩底平行。(2)等腰梯形的對角線相等。(3)等腰梯形是軸對稱圖形,它只有一條對稱軸,即兩底的垂直平分線。4、等腰梯形的判定(1)定義:兩腰相等的梯形是等腰梯形(2)定理:在同一底上的兩個角相等的梯形是等腰梯形(3)對角線相等的梯形是等腰梯形。5、梯形的面積(1)如圖,(2)梯形中有關圖形的面積:;6、梯形中位線定理梯形中位線平行于兩底,并且等于兩底和的一半。第十一章 解直角三角形考點一、直角三角形的性質 1、直角三角形的兩個銳角互余:可表示如下:C=90A+B=902、在直角三角形中,30角所對的直角邊等于斜邊的一半。
41、 A=30可表示如下: BC=AB C=903、直角三角形斜邊上的中線等于斜邊的一半 ACB=90 可表示如下: CD=AB=BD=AD D為AB的中點4、勾股定理直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的射影的比例中項,每條直角邊是它們在斜邊上的射影和斜邊的比例中項:ACB=90 CDAB 6、常用關系式:由三角形面積公式可得:ABCD=ACBC考點二、直角三角形的判定1、有一個角是直角的三角形是直角三角形。2、如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。3、勾股定理的逆定理:如果三角形的三邊長a,b
42、,c有關系,那么這個三角形是直角三角形。考點三、銳角三角函數的概念 1、如圖,在ABC中,C=90 銳角A的對邊與斜邊的比叫做A的正弦,記為sinA,即;銳角A的鄰邊與斜邊的比叫做A的余弦,記為cosA,即;銳角A的對邊與鄰邊的比叫做A的正切,記為tanA,即;銳角A的鄰邊與對邊的比叫做A的余切,記為cotA,即。2、銳角三角函數的概念銳角A的正弦、余弦、正切、余切都叫做A的銳角三角函數3、一些特殊角的三角函數值三角函數 0 30 45 60 90sin01cos10tan01不存在cot不存在104、各銳角三角函數之間的關系(1)互余關系:sinA=cos(90A),cosA=sin(90A
43、) ; tanA=cot(90A),cotA=tan(90A)(2)平方關系:(3)倒數關系:tanAtan(90A)=1(4)弦切關系:tanA=5、銳角三角函數的增減性當角度在090之間變化時,(1)正弦值隨著角度的增大(或減小)而增大(或減小);(2)余弦值隨著角度的增大(或減小)而減小(或增大);(3)正切值隨著角度的增大(或減小)而增大(或減小);(4)余切值隨著角度的增大(或減小)而減小(或增大)考點四、解直角三角形 (35)1、解直角三角形的概念在直角三角形中,除直角外,一共有五個元素,即三條邊和兩個銳角,由直角三角形中除直角外的已知元素求出所有未知元素的過程叫做解直角三角形。2
44、、解直角三角形的理論依據在RtABC中,C=90,A,B,C所對的邊分別為a,b,c(1)三邊之間的關系:(勾股定理)(2)銳角之間的關系:A+B=90(3)邊角之間的關系:第十二章 圓考點一考點二考點一、圓的相關概念1、圓的定義:在一個個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫做圓,固定的端點O叫做圓心,線段OA叫做半徑。2、圓的幾何表示:以點O為圓心的圓記作“O”,讀作“圓O”考點二、弦、弧等與圓有關的定義(1)弦:連接圓上任意兩點的線段叫做弦。(如圖中的AB)(2)直徑:經過圓心的弦叫做直徑。(如圖中的CD)直徑等于半徑的2倍。(3)半圓:圓的任意
45、一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓。(4)弧、優弧、劣弧圓上任意兩點間的部分叫做圓弧,簡稱弧。弧用符號“”表示,以A,B為端點的弧記作“”,讀作“圓弧AB”或“弧AB”。大于半圓的弧叫做優弧(多用三個字母表示);小于半圓的弧叫做劣弧(多用兩個字母表示)考點三、垂徑定理及其推論垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。(2)弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。(3)平分弦所對的一條弧的直徑垂直平分弦,并且平分弦所對的另一條弧。推論2:圓的兩條平行弦所夾的弧相等。垂徑定理及其推論可概括
46、為: 過圓心 垂直于弦直徑 平分弦 知二推三 平分弦所對的優弧 平分弦所對的劣弧考點四、圓的對稱性 (3分)1、圓的軸對稱性:圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。2、圓的中心對稱性:圓是以圓心為對稱中心的中心對稱圖形。考點五、弧、弦、弦心距、圓心角之間的關系定理1、圓心角:頂點在圓心的角叫做圓心角。2、弦心距:從圓心到弦的距離叫做弦心距。3、弧、弦、弦心距、圓心角之間的關系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦想等,所對的弦的弦心距相等。推論:在同圓或等圓中,如果兩個圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對應的其余各組量都分別相等
47、。考點六、圓周角定理及其推論1、圓周角:頂點在圓上,并且兩邊都和圓相交的角叫做圓周角。2、圓周角定理:一條弧所對的圓周角等于它所對的圓心角的一半。推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。推論2:半圓(或直徑)所對的圓周角是直角;90的圓周角所對的弦是直徑。推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。考點七、點和圓的位置關系設O半徑r,點P到圓心距離為d,則:dr點P在O外。考點八、過三點的圓1、過三點的圓:不在同一直線上的三個點確定一個圓。2、三角形的外接圓:經過三角形的三個頂點的圓叫做三角形的外接圓。3、三角形的外心:三角形
48、的外接圓的圓心是三角形三條邊的垂直平分線的交點,它叫做這個三角形的外心。4、圓內接四邊形性質(四點共圓的判定條件):圓內接四邊形對角互補。考點九、反證法先假設命題中的結論不成立,然后由此經過推理,引出矛盾,判定所做的假設不正確,從而得到原命題成立,這種證明方法叫做反證法。考點十、直線與圓的位置關系直線和圓有三種位置關系,具體如下:(1)相交:直線和圓有兩個公共點時,叫做直線和圓相交,這時直線叫做圓的割線,公共點叫做交點;(2)相切:直線和圓有唯一公共點時,叫做直線和圓相切,這時直線叫做圓的切線,(3)相離:直線和圓沒有公共點時,叫做直線和圓相離。若O半徑r,圓心O到直線l距離d:直線l與O相交
49、dr。考點十一、切線的判定和性質1、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線。2、切線的性質定理:圓的切線垂直于經過切點的半徑。考點十二、切線長定理1、切線長:在經過圓外一點的圓的切線上,這點和切點之間的線段的長叫做這點到圓的切線長。2、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。考點十三、三角形的內切圓 1、三角形的內切圓:與三角形的各邊都相切的圓叫做三角形的內切圓。2、三角形的內心:三角形的內切圓的圓心是三角形的三條內角平分線的交點,它叫做三角形的內心。考點十四、圓和圓的位置關系1、圓和圓的位置關系如果兩個圓沒有公共
50、點,那么就說這兩個圓相離,相離分為外離和內含兩種。如果兩個圓只有一個公共點,那么就說這兩個圓相切,相切分為外切和內切兩種。如果兩個圓有兩個公共點,那么就說這兩個圓相交。2、圓心距:兩圓圓心的距離叫做兩圓的圓心距。3、圓和圓位置關系的性質與判定設兩圓的半徑分別為R和r,圓心距為d,那么兩圓外離dR+r; 兩圓外切d=R+r; 兩圓相交R-rdr); 兩圓內含dr)4、兩圓相切、相交的重要性質如果兩圓相切,那么切點一定在連心線上,它們是軸對稱圖形,對稱軸是兩圓的連心線;相交的兩個圓的連心線垂直平分兩圓的公共弦。考點十五、正多邊形和圓1、正多邊形的定義:各邊相等,各角也相等的多邊形叫做正多邊形。2、
51、正多邊形和圓的關系只要把一個圓分成相等的一些弧,就可以做出這個圓的內接正多邊形,這個圓就是這個正多邊形的外接圓。考點十六、與正多邊形有關的概念1、正多邊形的中心:正多邊形的外接圓的圓心叫做這個正多邊形的中心。2、正多邊形的半徑:正多邊形的外接圓的半徑叫做這個正多邊形的半徑。3、正多邊形的邊心距:正多邊形的中心到正多邊形一邊的距離叫做這個正多邊形的邊心距。4、中心角:正多邊形的每一邊所對的外接圓的圓心角叫做這個正多邊形的中心角。考點十七、正多邊形的對稱性1、正多邊形軸對稱性:正多邊形都是軸對稱圖形。一個正n邊形共n條對稱軸,每條對稱軸都過正n邊形中心。2、正多邊形的中心對稱性:邊數為偶數的正多邊
52、形是中心對稱圖形,它的對稱中心是正多邊形的中心。3、正多邊形的畫法:先用量角器或尺規等分圓,再做正多邊形。考點十八、弧長和扇形面積1、弧長公式:n的圓心角所對的弧長l的計算公式為2、扇形面積公式:,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長。3、圓錐的側面積:其中l是圓錐的母線長,r是圓錐的地面半徑。補充:(此處為大綱要求外的知識,但對開發學生智力,改善學生數學思維模式有很大幫助)1、相交弦定理:O中,弦AB與弦CD相交與點E,則AEBE=CEDE2、弦切角定理相關知識:弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角。弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角。即:BA
53、C=ADC切割線定理:PA為O切線,PBC為O割線,則第十三章 圖形的變換考點一、平移1、定義:把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。2、性質(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動(2)連接各組對應點的線段平行(或在同一直線上)且相等。考點二、軸對稱、1、定義:把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線成軸對稱,該直線叫做對稱軸。2、性質(1)關于某條直線對稱的兩個圖形是全等形。(2)如果兩個圖形關于某直線對稱,那么對稱軸是對應點連
54、線的垂直平分線。(3)兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。3、判定:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。4、軸對稱圖形:把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。考點三、旋轉 1、定義:把一個圖形繞某點O轉動一個角度的圖形變換叫做旋轉,其中O叫做旋轉中心,轉動的角叫做旋轉角。2、性質(1)對應點到旋轉中心的距離相等。(2)對應點與旋轉中心所連線段的夾角等于旋轉角。考點四、中心對稱1、定義:把一個圖形繞著某一個點旋轉180,如果旋轉后的圖形能夠和
55、原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。2、性質(1)關于中心對稱的兩個圖形是全等形。(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。3、判定:如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。4、中心對稱圖形把一個圖形繞某一個點旋轉180,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。考點五、坐標系中對稱點的特征1、關于原點對稱的點的特征兩個點關于原點對稱時,它們的坐標的符號相反,即點P(x,y)關于原點的對稱點為P(-x,-y)2、關于x軸對稱的點的特征兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關于x軸的對稱點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度規劃八步法:日事清目標管理+使命愿景模型驅動組織架構優化與業務流程升級
- 石材開采的環境友好型開采方法考核試卷
- 紡織品、針織品及原料批發考核試卷
- 全新的什么初三語文作文
- 玻璃纖維增強塑料的熱性能研究考核試卷
- 燈具電路與電氣安全考核試卷
- 充電設施在藝術館和博物館的推廣考核試卷
- 下肢深靜脈血栓的預防和護理新進展 2
- 四川省2023~2024學年高二數學下學期期末模擬試題二含答案
- 一例主動脈夾層患者護理個案匯報課件
- 群眾性戰傷救治技術知識考試題庫-下(多選、判斷題部分)
- 微風發電系統施工方案
- 機械設計說明書-精煉爐鋼包車設計
- E+-H-Promass-80流量計基本操作步驟說明書
- 中國傳統文化之中國古代科技PPT
- 心力衰竭護理業務查房
- 粉塵防爆安全知識考試試題
- 固定床列管式反應器設計說明書(曾禮菁)
- 焊接高級技師培訓教材(電子束焊)
- 三進制計算機
- 色溫-XY-UV色坐標換算公式
評論
0/150
提交評論