




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2022-2023學年河北省石家莊市辰興中學高二數學理上學期期末試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 一個算法的程序框圖如圖所示,若該程序輸出的結果為,則判斷框內應填入的條件是 ( ) A B CD參考答案:B2. 橢圓的一個焦點為,若橢圓上存在一個點,滿足以橢圓短軸為直徑的圓與線段相切于該線段的中點,則橢圓的離心率為( )A. B. C. D. 參考答案:A略3. 正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)的底面邊長為2,高為2,為邊的中點,動點在表面上運動,并且總保持,則動點的軌跡的周長為( )
2、A B C D參考答案:D略4. 已知,不等式,可推廣為,則的值為A B C D參考答案:B略5. 底面半徑為1的圓柱表面積為,則此圓柱的母線長為 ( )A、2 B、3 C、 D、參考答案:B6. 函數yf(x)在定義域(,3)內的圖像如圖所示記yf(x)的導函數為yf(x),則不等式f(x)0的解集為( )A,12,3) B1,C,1,2)D(, ,3) 參考答案:A因為函數yf(x)在區間,1和2,3)內單調遞減,所以不等式f(x)0的解集為,12,3)。7. 函數,在定義域內任取一點,使的概率是().參考答案:A8. 如下圖所示,觀察四個幾何體,其中判斷正確的是( ) (A)(1)是棱臺
3、 (B)(2)是圓臺 (C)(3)是棱錐 (D)(4)不是棱柱參考答案:C9. 在2010年廣州亞運會上,某大樓安裝5個彩燈,它們閃亮的順序不固定。每個彩燈閃亮只能是紅、橙、黃、綠、藍中的一種顏色,且這5個彩燈閃亮的顏色各不相同,記這5個彩燈有序地閃亮一次為一個閃爍。在每個閃爍中,每秒鐘有且只有一個彩燈閃亮,而相鄰兩個閃爍的時間間隔均為5秒。如果要實現所有不同的閃爍,那么需要的時間至少是 ( )A1205秒 B1200秒 C1195秒 D1190秒參考答案:C略10. 已知,則等于 A0 B-4 C-2 D2參考答案:B略二、 填空題:本大題共7小題,每小題4分,共28分11. 已知冪函數f(
4、x)的圖象過點,則函數f(16)的值為 參考答案:設冪函數為:因為冪函數f(x)的圖象過點,故,所以f(x)= ,所以f(16) = ,故答案為12. 如果執行下面的程序框圖,那么輸出的S等于_.參考答案:3略13. 設,則_.參考答案:【分析】先利用復數的除法法則將復數表示為一般形式,然后利用復數的模長公式可求出.【詳解】,則,故答案為:。【點睛】本題考查復數的除法,考查復數的模長公式,在求解復數的問題時,一般要將復數利用四則運算法則將復數表示為一般形式,再結合相關公式進行求解,考查計算能力,屬于基礎題。14. 參考答案:315. 復數的虛部為_.參考答案:16. 等比數列中,則等比數列的公
5、比的值為 參考答案:略17. 復數z滿足(i為虛數單位),則z=_參考答案:【分析】由題意求出,根據復數的除法即可求得的值.【詳解】由題意,所以.所以本題答案為.【點睛】本題主要考查復數的運算及復數的求模問題,屬基礎題.三、 解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18. 已知矩陣A,A的一個特征值2,其對應的一個特征向量是1(1) 求矩陣A;(2) 設直線l在矩陣A1對應的變換作用下得到了直線m:xy4,求直線l的方程參考答案:(1) .(2) xy80.【分析】(1)由條件得a,b的方程組求解.(2)設直線m:xy4上的任意一點(x,y),由條件利用矩陣A對
6、應的變換代入可得.【詳解】(1) 因為,所以,解得,故.(2) 設直線m:xy4上的任意一點(x,y)在矩陣A對應的變換作用下得到點(x,y),則,所以所以,因為xy4,所以xy8, 所以直線l的方程為xy80.【點睛】本題考查矩陣的特征向量及矩陣變換,考查方程的思想,運算能力,屬于中檔題.19. 已知拋物線C:y2=2px(p0)的焦點為F,點F是雙曲線:=1的一個焦點;(1)求拋物線C的方程;(2)過點F任作直線l與曲線C交于A,B兩點求?的值;由點A,B分別向(x2)2+y2=1各引一條切線切點分別為P、Q,記=AFP,=BFQ,求cos+cos的值參考答案:考點:直線與圓錐曲線的綜合問
7、題;拋物線的標準方程;拋物線的簡單性質 專題:圓錐曲線的定義、性質與方程分析:(1)由已知條件推導出雙曲線的焦點F1(2,0),F2 (2,0),拋物線C焦點坐標F( ,0),從而得到 =2,由此能求出拋物線的C的方程(2)根據拋物線方程可得焦點F的坐標,設出直線的方程與拋物線方程聯立消去x,設A,B的坐標分別為(x1,y1)(x2,y2)根據韋達定理可求得y1y2進而求得x1x2的值進而可得答案對直線l的斜率分存在和不存在兩種情況:把直線的方程與拋物線的方程聯立,利用根與系數的關系及拋物線的定義即可得出解答:解:(1)雙曲線C:=1中,a2=,b2=,c=2,雙曲線的焦點F1(2,0),F2
8、 (2,0),拋物線C:y2=2px(p0)與雙曲線C:=1的一個焦點相同,且拋物線C:y2=2px(p0)的焦點坐標F(,0),=2,解得p=4,拋物線的C的方程是y2=8x(2)根據拋物線方程y2=8x可得F(2,0)設直線l的方程為x=my+2,將其與C的方程聯立,消去x得y28my16=0設A,B的坐標分別為(x1,y1)(x2,y2)則y1y2=16因為=8x1,=8x2,所以x1x2=4,?=x1x2+y1y2=12當l不與x軸垂直時,設直線l的方程為y=k(x2),代入拋物線方程得k2x2(4k2+8)x+4k2=0,設A(x1,y1),B(x2,y2),則x1+x2=2k2+4
9、,x1x2=4cos+cos=+=,當l與x軸垂直時,cos+cos=,綜上,cos+cos=點評:熟練掌握點到直線的距離公式、圓的標準方程及切線的性質、分類討論的思想方法、直線的方程與拋物線的方程聯立并利用根與系數的關系及拋物線的定義是解題的關鍵20. (12分)(2015秋?洛陽期中)解關于x的不等式ax22x2a0(a1)參考答案:【考點】一元二次不等式的解法 【專題】不等式的解法及應用【分析】由1a0,a=0,0a1,a1,進行分類討論,由此利用分類討論思想和一元二次方程的解法能求出原不等式的解集【解答】解:(1)當a=0時,有2x0,x0(2)a0時,=44a2當0,即0a1方程ax
10、22x+a=0的兩根為=,不等式的解集為x|x當=0,即a=1時,有x22x+10,x?;當0,即a1時,方程ax22x+a=0無實數根,不等式ax22x+a0無解,x?(3)當1a0時,0,不等式ax22x+a0的解集為x|x或x綜上,關于x的不等式ax22x2a0(a1)的解集為:當1a0時,關于x的不等式ax22x2a0(a1)的解集為:x|x或x;當a=0時,關于x的不等式ax22x2a0(a1)的解集為:x|x0;當0a1時,關于x的不等式ax22x2a0(a1)的解集為:x|x當a1時,關于x的不等式ax22x2a0(a1)的解集為:?【點評】本題考查不等式的解集的求法,是中檔題,
11、解題時要認真審題,注意分類討論思想的合理運用21. 已知拋物線C的頂點在原點,對稱軸是x軸,拋物線過點M(,1)(1)求C的方程;(2)過C的焦點F作直線交拋物線于A,B兩點,若|AB|=,|AF|BF|,求|AF|參考答案:【考點】直線與圓錐曲線的關系;拋物線的標準方程【專題】計算題;方程思想;待定系數法;圓錐曲線的定義、性質與方程【分析】(1)通過設拋物線C的標準方程為y2=2px,代入點M(,1)計算可知p=1,進而可得結論;(2)通過(1)可知焦點F(,0),設A(x1,y1)、B(x2,y2),設直線AB的方程為x=my+,通過聯立直線AB與拋物線方程,利用韋達定理及兩點間距離公式計
12、算可知m=,進而利用拋物線的定義計算即得結論【解答】解:(1)由題意可設拋物線C的標準方程為:y2=2px,拋物線過點M(,1),p=1,所以拋物線C的方程為:y2=2x;(2)由(1)可知焦點F(,0),設A(x1,y1)、B(x2,y2),設直線AB的方程為:x=my+,則聯立直線AB與拋物線方程,整理可知:y22my1=0,y1+y2=2m,y1y2=1,=4m2+40,|AB|=2(1+m2)=,解得:m=,x1+x2=m(y1+y2)+1=,x1x2=m2y1y2+(y1+y2)+=,x1=或x1=,|AF|BF|,B(,y1)、A(,y2),又拋物線C的準線方程為:x=,|AF|=
13、+=【點評】本題是一道直線與圓錐曲線的綜合題,考查運算求解能力,注意解題方法的積累,屬于中檔題22. (12分)如圖,四棱錐PABCD的底面ABCD是正方形,側棱PD底面ABCD,PD=DC=2,E是PC的中點,EFPB交PB于點F()求點C到平面BDE的距離;()證明:PB平面DEF參考答案:【考點】直線與平面垂直的判定;點、線、面間的距離計算【分析】()利用VCBED=VEBCD,求點C到平面BDE的距離;()證明:DE平面PCB,得出DEPB,又EFPB,且EFDE=E,所以PB平面DEF【解答】()解:取CD的中點O,連結EO,則EOPD(1分)PD底面ABCD,PD=2,EO底面ABCD, (2分)ABCD是正方形且DC=2,在RtPDC中,在RtBCE中,在RtBAD中,因為BD2=BE2+DE2,所以BEDE設點C到平面BDE的距離為h,則VCBED=VEBCD,即,解得故點C到平面BDE的距離為(6分)()證明:PD底面ABCD且BC?底面ABCD,PDBC因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年證券從業資格證金融工具解析試題及答案
- 項目管理專業資格考試能力動態試題及答案
- 注冊會計師考試的關鍵準備細則試題及答案
- 注冊會計師考試2025年合規風險管理流程探討試題及答案
- 微生物與疾病預防的關系試題及答案
- 風險應對策略在項目管理中的運用試題及答案
- 證券從業資格證的復習心態調整技巧試題及答案
- 證券投資決策模型的應用試題及答案
- 臨床微生物學課程總結試題及答案
- 股票價值評估的基本方法試題及答案
- 福建省仙游木蘭抽水蓄能電站500kV開關站工程環境影響報告書
- MotionView-MotionSolve應用技巧與實例分析
- 集裝箱配載軟件macs3說明書
- 奧氏體不銹鋼對接焊接接頭的超聲檢測
- 南京雨花臺烈士陵園
- 2023超疏水表面的機械穩定性測試方法
- 創意繪畫《“浪漫的化身”薰衣草》課件
- 過濾式消防自救呼吸器-安全培訓
- 胸腔積液診斷的中國專家共識(2022版)解讀
- 既有建筑外觀改造和景觀環境綜合整治技術導則
- PCB的DFM評審報告模板
評論
0/150
提交評論