




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、【知識精講】正比例函數(shù)的圖象及性質(zhì)初二 數(shù)學一鍵發(fā)布配套作業(yè) & AI智能精細批改(任務-發(fā)布任務-選擇章節(jié))正比例函數(shù)的定義:一般地,形如 yk x( k 是常數(shù),k 0)的函數(shù),叫做正比例函數(shù),其中 k 叫做比例系數(shù)下面我們來研究正比例函數(shù)的圖象.函數(shù)的圖象:把一個函數(shù)自變量的每一個值與對應的函數(shù)值分別作為點的橫坐標和縱坐標,在直角坐標系內(nèi)描出相應的點,所有這些點組成的圖形叫做該函數(shù)的圖象畫函數(shù)圖象的步驟:(1)列表;(2)描點;(3)連線.概念理解:如果某一個函數(shù)可以用關(guān)系式表示時,那么滿足函數(shù)關(guān)系式的 x、y 所對應的點(x,y)都在函數(shù)的圖象上;反之,函數(shù)圖象上的點(x,y)中的 x
2、、y 滿足函數(shù)的關(guān)系式.班海老師智慧教學好幫手班海,老師們都在免費用的數(shù)學作業(yè)精細批改微信小程序!感謝您下載使用【班海】教學資源!為什么他們都在用班海?一鍵發(fā)布作業(yè),系統(tǒng)自動精細批改(錯在哪?為何錯?怎么改?),從此告別批改作業(yè)難幫助學生查漏補缺,培養(yǎng)規(guī)范答題好習慣,提升數(shù)學解題能力快速查看作業(yè)批改詳情,全班學習情況盡在掌握多個班級可自由切換管理,學生再多也能輕松當老師無需下載,不占內(nèi)存,操作便捷,永久免費!掃碼一鍵發(fā)布數(shù)學作業(yè)AI智能精細批改(任務-發(fā)布任務-選擇題目)下列各點在函數(shù) y x 的圖象上的是()A. (1, ) B. (1, )C. (3, ) D. ( ,3)O23451-1
3、-4-3-251234-5-4-3-2-1y2x畫出正比例函數(shù) y2 x 的圖象.解:1、列表:x-2-1012y 2、描點:以表中各組對應值為點的坐標,在直角坐標系內(nèi)描出相應的點. 3、連線:依次連接各點.y2 x 的圖象是一條直線.用你認為最簡單的方法畫出下列函數(shù)的圖象:(1) y3x(2)(3)yx.x01y3xyx解:函數(shù) y3x、與函數(shù) yx 均可以用兩點法畫圖象,列表:描點并連線,圖象如圖所示O23451-1-5-4-3-21234-5-4-3-2-16y3xyx根據(jù)圖象回答以下問題:O2341-1-4-3-21234-5-4-3-2-1y3xyx(1)如圖所示的三個函數(shù)圖象,反映
4、的是正比例函數(shù)yk x(k0)中 k0 時的圖象,它們的圖象經(jīng)過第 象限.(2)每一條直線,從左向右在逐漸上升還是在下降?說明了什么?結(jié)論:1、正比例函數(shù) yk x( k 0),當 k0時,直線ykx經(jīng)過第一、第三象限,從左向右上升,即 y 隨 x的增大而增大.(3)哪一個函數(shù)的圖象更靠近 y 軸?哪一個函數(shù)圖象中的 y 隨 x的增大而增大的更快?2、| k |越大,函數(shù)的圖象越靠近 y 軸,從左向右上升的越快,即 y 隨 x 的增大而增大的越快.畫出正比例函數(shù) y-3x 的圖象.(1)用兩點法畫 y-3x 的圖象,習慣上取原點0(0,0)和 A(,).(2)滿足 y-3x 的 x、y 所對應
5、的點(x、y)都在y-3x 的圖象上嗎?(3)正比例函數(shù) y-3x 的圖象上的點(x、y)都滿足關(guān)系式 y-3x 嗎?y-3xy-xA(4)在同一坐標系內(nèi)再畫出 的圖象,y 隨 x 的增大而如何變化?哪一個函數(shù)的圖象更靠近y 軸?哪一個函數(shù)圖象中的 y 隨 x 的增大而 的更快?O231-1-4-3-21234-4-3-2-156BCO231-1-4-3-21234-4-3-2-1y-3xyxA結(jié)論:3、正比例函數(shù) yk x( k 0)的圖象是一條經(jīng)過原點(0,0),(1,k)的直線,稱之為直線 yk x. 4、正比例函數(shù) yk x( k0),當k 0時,直線 yk x 經(jīng)過第二、第四象限,從
6、左向右下降,即 y隨 x的增大而減小. 5、| k |越大,函數(shù)的圖象越靠近 y 軸,從左向右下降的越快,即 y 隨 x 的增大而減小的越快.O231-1-4-3-21234-4-3-2-1y-3xy-x思考:正比例函數(shù) y3x 與 y-3x 的比例系數(shù)有何關(guān)系,它們的圖象有什么關(guān)系?其它函數(shù)是這樣嗎?y3xyx兩個正比例函數(shù)的比例系數(shù)的絕對值相等時,兩條直線關(guān)于坐標軸對稱;k越大,y 隨 x 的增大而增大(或減小)的越快.正比例函數(shù) ykx ( k 是常數(shù),k 0 )的性質(zhì):1、正比例函數(shù) yk x 的圖象是一條經(jīng)過原點(0,0),(1,k)的直線.2、當 k0時,直線 yk x 經(jīng)過第一、
7、第三象限,y 隨 x 的增大而增大;兩個正比例函數(shù)的比例系數(shù)的絕對值相等時,兩條直線關(guān)于坐標軸對稱;k越大,y 隨 x 的增大而增大(或減小)的越快. 當 k0時,直線 yk x 經(jīng)過第二、第四象限,y 隨 x 的增大而減小.已知函數(shù)y3x的圖象經(jīng)過點 A(1,y1)、點 B(2,y2),則y1_y2(填“”“”或“”).方法一:利用求值法比較大小.方法二:利用數(shù)形結(jié)合思想比較大小.方法三:利用函數(shù)的增減性比較大小.答案:.方法一:把點 A、點 B 的橫坐標-1、-3分別代入函數(shù) y3x,則y1-3,y2-6,所以 y1y2.方法二:畫出正比例函數(shù)y3x的圖象,在函數(shù)圖象上標出點 A、點 B,顯然可得 y1y2.方法三:根據(jù)正比例函數(shù)的性質(zhì),當 k 0時,y 的值隨著 x 值的增大而增大,即可得 y1y2.當 x0時,y 與 x 的函數(shù)關(guān)系式為 y2x,當 x0時,y 與 x 的函數(shù)關(guān)系式為 y2x,則在同一直角坐標系中的圖象大致為()如圖,正方形 ABCD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 區(qū)塊鏈在電子商務中的應用與發(fā)展趨勢
- 健康管理基于大數(shù)據(jù)的個性化服務策略研究
- 醫(yī)學人文素質(zhì)教育項目的設(shè)計與實踐
- 區(qū)塊鏈技術(shù)商業(yè)領(lǐng)域的變革者
- 醫(yī)療倫理的深度探索超越說明書的道德決策框架
- 遠程辦公中的身份認證技術(shù)-全面剖析
- 高維數(shù)據(jù)極值分析-全面剖析
- 醫(yī)保政策下醫(yī)院感染控制與護理服務的協(xié)同發(fā)展
- 加密貨幣的未來趨勢與投資策略
- 肺泡細胞癌臨床試驗設(shè)計-全面剖析
- 彝文《指路經(jīng)》課件
- 《神經(jīng)系統(tǒng)的傳導通路》課件
- 基本農(nóng)田劃定技術(shù)規(guī)程(TDT1032-2011)
- 江蘇省醫(yī)療服務項目價格標準
- 公司報廢申請單
- 太陽能電池等效電路
- TSSITS 2002-2022 低速無人駕駛清掃車安全規(guī)范
- 籍貫對照表完整版
- 個人理財分期還款計劃管理表1
- TGIA 004-2020 垃圾填埋場地下水污染防治技術(shù)指南
- GB/T 709-1988熱軋鋼板和鋼帶的尺寸、外形、重量及允許偏差
評論
0/150
提交評論