Event-Extracion-Learning-from-Corpora事件從語料庫學習提取-19頁PPT課件_第1頁
Event-Extracion-Learning-from-Corpora事件從語料庫學習提取-19頁PPT課件_第2頁
Event-Extracion-Learning-from-Corpora事件從語料庫學習提取-19頁PPT課件_第3頁
Event-Extracion-Learning-from-Corpora事件從語料庫學習提取-19頁PPT課件_第4頁
Event-Extracion-Learning-from-Corpora事件從語料庫學習提取-19頁PPT課件_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、Event Extraction:Learning from CorporaPrepared by Ralph GrishmanBased on research and slides by Roman YangarberNYUFinding PatternsHow can we collect patterns?Supervised learningmark information to be extracted in textcollect information and context = specific patternsgeneralize patternsAnnotation qu

2、ite expensiveZipfian distribution of patterns means that annotation of consecutive text is inefficient the same pattern is annotated many timesUnsupervised learning?The intuition:if we collect documents DR relevant to the scenario, patterns relevant to the scenario will occur more frequently in DR t

3、han in the language as a whole(cf. sublanguage predicates in Harriss distributional analysis)Riloff 96Corpus manually divided into relevant and irrelevant documentsCollect patterns around each noun phraseScore patterns by R log Fwhere R = relevance rate= freq in relevant docs / overall freqSelect to

4、p-ranked patternsThese patterns each find one template slot;combining filled slots into templates is a separate taskExtending the Discovery ProcedureFinding relevant documents automaticallyYangarber use patterns to select documentsSudo use keywords and IR engineDefining larger patterns (covering sev

5、eral template slots)Yangarber clause structuresNobata; Sudo larger structuresAutomated Extraction Pattern DiscoveryGoal: find examples / patterns relevant to a given scenariowithout any corpus tagging (Yangarber 00)Method:identify a few seed patterns for scenarioretrieve documents containing pattern

6、sfind subject-verb-object pattern withhigh frequency in retrieved documentsrelatively high frequency in retrieved docs vs. other docsadd pattern to seed and repeat#1: pick seed patternSeed: #2: retrieve relevant documentsSeed: Fred retired. Harry was named president.Maki retired. Yuki was named pres

7、ident.Relevant documentsOtherdocuments#3: pick new patternSeed: appears in several relevant documents (top-ranked by Riloff metric)Fred retired. Harry was named president.Maki retired. Yuki was named president.#4: add new pattern to pattern setPattern set: Note: new patterns added with confidence 1E

8、xperimentTask: Management succession (as MUC-6)Source: Wall Street JournalTraining corpus: 6,000 articlesTest corpus:100 documents: MUC-6 formal training+ 150 documents judged manuallyPre-processingFor each document, find and classify names: person | location | organization | Parse document(regulari

9、ze passive, relative clauses, etc.)For each clause, collect a candidate pattern:tuple: heads of subject verb direct object object/subject complement locative and temporal modifiers Experiment: two seed patternsv-appoint = appoint, elect, promote, name v-resign = resign, depart, quit, step-down Run d

10、iscovery procedure for 80 iterationsEvaluationLook at discovered patternsnew patterns, missed in manual trainingDocument filteringSlot fillingDiscovered patternsEvaluation: Text FilteringHow effective are discovered patterns at selecting relevant documents?IR-styledocuments matching at least one patternHow effective are patterns within a complete IE system?MUC-style IE on MUC-6 corporaCaveat: filtered / aligned by handtraining

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論