佛山市三水2021-2022學(xué)年高三下第一次測試數(shù)學(xué)試題含解析_第1頁
佛山市三水2021-2022學(xué)年高三下第一次測試數(shù)學(xué)試題含解析_第2頁
佛山市三水2021-2022學(xué)年高三下第一次測試數(shù)學(xué)試題含解析_第3頁
佛山市三水2021-2022學(xué)年高三下第一次測試數(shù)學(xué)試題含解析_第4頁
佛山市三水2021-2022學(xué)年高三下第一次測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖,在底面邊長為1,高為2的正四棱柱中,點是平面內(nèi)一點,則三棱錐的正視圖與側(cè)視圖的面積之和為( )A2B3C4D52已知平行于軸的直線分別交曲線于兩點,則的最小值為( )ABCD3已

2、知,則下列不等式正確的是( )ABCD4如圖,四面體中,面和面都是等腰直角三角形,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為( )ABCD5已知中,則( )A1BCD6 “完全數(shù)”是一些特殊的自然數(shù),它所有的真因子(即除了自身以外的約數(shù))的和恰好等于它本身.古希臘數(shù)學(xué)家畢達(dá)哥拉斯公元前六世紀(jì)發(fā)現(xiàn)了第一、二個“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則6和28不在同一組的概率為( )ABCD7在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為( )ABC1D8已知復(fù)數(shù),其中,

3、是虛數(shù)單位,則( )ABCD9某醫(yī)院擬派2名內(nèi)科醫(yī)生、3名外科醫(yī)生和3名護(hù)士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進(jìn)行義務(wù)巡診,其中每個分隊都必須有內(nèi)科醫(yī)生、外科醫(yī)生和護(hù)士,則不同的分配方案有A72種B36種C24種D18種10已知等差數(shù)列an,則“a2a1”是“數(shù)列an為單調(diào)遞增數(shù)列”的( )A充分而不必要條件B必要而不充分條件C充分必要條件D既不充分也不必要條件11已知復(fù)數(shù)滿足(是虛數(shù)單位),則=()ABCD12如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知,如

4、果函數(shù)有三個零點,則實數(shù)的取值范圍是_14若奇函數(shù)滿足,為R上的單調(diào)函數(shù),對任意實數(shù)都有,當(dāng)時,則_.15如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是_;最大值為_.16下圖是一個算法流程圖,則輸出的的值為_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)在中,角A、B、C的對邊分別為a、b、c,且. (1)求角A的大小;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),求的值.18(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)在點處的切線方程;比較與的大小; (2)當(dāng)時,若對時,且有唯一零點,證明:19(12分)電視傳媒公

5、司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?非體育迷體育迷合計男女1055合計 (2)將上述調(diào)查所得到的頻率視為概率現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X)附:.P(K2k)0.050.01k3.8416

6、.63520(12分)對于給定的正整數(shù)k,若各項均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.21(12分)已知函數(shù),其中,為自然對數(shù)的底數(shù).(1)當(dāng)時,證明:對;(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。22(10分)設(shè)橢圓的右焦點為,過的直線與交于兩點,點的坐標(biāo)為(1)當(dāng)直線的傾斜角為時,求線段AB的中點的橫坐標(biāo);(2)設(shè)點A關(guān)于軸的對稱點為C,求證:M,B,C三點共線;(3)設(shè)過點M的直線交橢圓于兩點,若橢圓上存在點P,使得(其中O為坐標(biāo)原點),求實數(shù)的取值范圍參考答案一、選擇題:

7、本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1A【解析】根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.2A【解析】設(shè)直線為,用表示出,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值【詳解】解:設(shè)直線為,則,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,

8、所以故選:【點睛】本題考查導(dǎo)數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題3D【解析】利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項【詳解】已知,賦值法討論的情況:(1)當(dāng)時,令,則,排除B、C選項;(2)當(dāng)時,令,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題4B【解析】分別取、的中點、,連接、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點作平面的垂線與過點作

9、平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案【詳解】如下圖所示,分別取、的中點、,連接、,由于是以為直角等腰直角三角形,為的中點,且、分別為、的中點,所以,所以,所以二面角的平面角為,則,且,所以,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內(nèi),如下圖所示,由圖形可知,在中,所以,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時考查了計算能力,屬于中等題5C【解析】以為基

10、底,將用基底表示,根據(jù)向量數(shù)量積的運算律,即可求解.【詳解】,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數(shù)量積運算,屬于中檔題.6C【解析】先求出五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個的基本事件總數(shù)為,再求出6和28恰好在同一組包含的基本事件個數(shù),根據(jù)即可求出6和28不在同一組的概率.【詳解】解:根據(jù)題意,將五個“完全數(shù)”隨機分為兩組,一組2個,另一組3個,則基本事件總數(shù)為,則6和28恰好在同一組包含的基本事件個數(shù),6和28不在同一組的概率.故選:C.【點睛】本題考查古典概型的概率的求法,涉及實際問題中組合數(shù)的應(yīng)用.7B【解析】首先由正弦定理將邊化角可得,

11、即可得到,再求出,最后根據(jù)求出的最大值;【詳解】解:因為,所以因為所以,即,時故選:【點睛】本題考查正弦定理的應(yīng)用,余弦函數(shù)的性質(zhì)的應(yīng)用,屬于中檔題.8D【解析】試題分析:由,得,則,故選D.考點:1、復(fù)數(shù)的運算;2、復(fù)數(shù)的模.9B【解析】根據(jù)條件2名內(nèi)科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,根據(jù)排列組合進(jìn)行計算即可【詳解】2名內(nèi)科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護(hù)士,平均分成兩組,要求外科醫(yī)生和護(hù)士都有,則分1名外科,2名護(hù)士和2名外科醫(yī)生和1名護(hù)士,若甲村有1外科,2名護(hù)士,則有C31C32=33=9,其余的

12、分到乙村,若甲村有2外科,1名護(hù)士,則有C32C31=33=9,其余的分到乙村,則總共的分配方案為2(9+9)=218=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關(guān)鍵是先分組再分配,屬于常考題型.10C【解析】試題分析:根據(jù)充分條件和必要條件的定義進(jìn)行判斷即可解:在等差數(shù)列an中,若a2a1,則d0,即數(shù)列an為單調(diào)遞增數(shù)列,若數(shù)列an為單調(diào)遞增數(shù)列,則a2a1,成立,即“a2a1”是“數(shù)列an為單調(diào)遞增數(shù)列”充分必要條件,故選C考點:必要條件、充分條件與充要條件的判斷11A【解析】把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案【詳解】解:由,得,故選【點睛】本

13、題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題12B【解析】根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B【點睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題二、填空題:本題共4小題,每小題5分,共20分。13【解析】首先把零點問題轉(zhuǎn)化為方程問題,等價于有三個零點,兩側(cè)開方,可得,即有三個零點,再運用函數(shù)的單調(diào)性結(jié)合最值即可求出參數(shù)的取值范圍.【詳解】若函數(shù)有三個零點,即

14、零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數(shù)單調(diào)遞增,所以函數(shù)在區(qū)間上只有一解,對于函數(shù),解得,解得,解得,所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,當(dāng)時,當(dāng)時,此時函數(shù)若有兩個零點,則有,綜上可知,若函數(shù)有三個零點,則實數(shù)的取值范圍是.故答案為:【點睛】本題考查了函數(shù)零點的零點,恰當(dāng)?shù)拈_方,轉(zhuǎn)化為函數(shù)有零點問題,注意恰有三個零點條件的應(yīng)用,根據(jù)函數(shù)的最值求解參數(shù)的范圍,屬于難題.14【解析】根據(jù)可得,函數(shù)是以為周期的函數(shù),令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,所以時,;由,所以,所以函數(shù)是以為周期的函數(shù),又函數(shù)為奇函數(shù),所以.

15、故答案為:【點睛】本題主要考查了換元法求函數(shù)解析式、函數(shù)的奇偶性、周期性的應(yīng)用,屬于中檔題.15(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間163【解析】分析程序中各變量、各語句的作用,根據(jù)流程圖所示的順序,即可得出結(jié)論.【詳解】解:初始,第一次循環(huán): ;第二次循環(huán): ;第三次循環(huán): ;經(jīng)判斷,此時跳出循環(huán),輸出.故答案為:【點睛】本題考查了程序框圖的應(yīng)用問題,解題的關(guān)鍵是對算法語句的理解,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1);(2)【解析】(1)由,利用正弦定

16、理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設(shè),在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為, 所以, 即,即,所以.(2),. 所以,從而.所以,.不妨設(shè),O為外接圓圓心則AO=1,.在中,由正弦定理知,有. 即; 在中,由,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.18(1)見解析,見解析;(2)見解析【解析】(1)把代入函數(shù)解析式,求出函數(shù)的導(dǎo)函數(shù)得到,再求出,利用直線方程的點斜式求函數(shù)在點處的切線方程;令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得當(dāng)時,;當(dāng)時,;當(dāng)時,(2)由題意,在上有唯一零點

17、利用導(dǎo)數(shù)可得當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增,得到由在恒成立,且有唯一解,可得,得,即令,則,再由在上恒成立,得在上單調(diào)遞減,進(jìn)一步得到在上單調(diào)遞增,由此可得【詳解】解:(1)當(dāng)時,又,切線方程為,即;令,則,在上單調(diào)遞減又,當(dāng)時,即;當(dāng)時,即;當(dāng)時,即證明:(2)由題意,而,令,解得,在上有唯一零點當(dāng)時,在上單調(diào)遞減,當(dāng),時,在,上單調(diào)遞增在恒成立,且有唯一解,即,消去,得,即令,則,在上恒成立,在上單調(diào)遞減,又, ,在上單調(diào)遞增,【點睛】本題考查利用導(dǎo)數(shù)研究過曲線上某點處的切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查邏輯思維能力與推理論證能力,屬難題19 (1)無關(guān);(2) ,.

18、【解析】(1)由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人,從而可得列聯(lián)表如下:非體育迷體育迷合計男301545女451055合計7525100將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得.因為3.0303.841,所以我們沒有充分理由認(rèn)為“體育迷”與性別有關(guān)(2)由頻率分布直方圖知抽到“體育迷”的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名“體育迷”的概率.由題意知XB(3,),從而X的分布列為X0123PE(X)np.D(X)np(1p)20(1)證明見詳解;(2)證明見詳解【解析】(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,則對

19、于任意都成立,則成等比數(shù)列,設(shè)公比為,驗證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”. (2)證明:既是“數(shù)列”又是“數(shù)列”,可得,() (),() 可得:對于任意都成立,即 成等比數(shù)列,即成等比數(shù)列, 成等比數(shù)列, 成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時,由()可得: 時,由()可得: ,可得,同理可證成等比數(shù)列, 數(shù)列是等比數(shù)列【點睛】本題是一道數(shù)列的新定義題目,考查了等比數(shù)列的性質(zhì)、通項公式等基本知識,考查代數(shù)推理、轉(zhuǎn)化與化歸以及綜合運用數(shù)學(xué)知識探究與解決問題的能力,屬于難題.21 (1)見證明;(2) 【解析】(1)利用導(dǎo)數(shù)說明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點存在定理說明函數(shù)存在極值【詳解】(1)當(dāng)時,于是,.又因為,當(dāng)時,且.故當(dāng)時,即. 所以,函數(shù)為上的增函數(shù),于是,.因此,對,;(2) 方法一:由題意在上存在極值,則在上存在零點,當(dāng)時,為上的增函數(shù),注意到,所以,存在唯一實數(shù),使得成立. 于是,當(dāng)時,為上的減函數(shù);當(dāng)時,為上的增函數(shù);所以為函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論