




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2021-2022高考數學模擬試卷注意事項:1答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知二次函數的部分圖象如圖所示,則函數的零點所在區間為( )ABCD2為比較甲、乙兩名高二學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為5分,分值高者為優)
2、,根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述正確的是( )A乙的數據分析素養優于甲B乙的數學建模素養優于數學抽象素養C甲的六大素養整體水平優于乙D甲的六大素養中數據分析最差3已知等差數列中,若,則此數列中一定為0的是( )ABCD4如果直線與圓相交,則點與圓C的位置關系是( )A點M在圓C上B點M在圓C外C點M在圓C內D上述三種情況都有可能5在中,則在方向上的投影是( )A4B3C-4D-36用1,2,3,4,5組成不含重復數字的五位數,要求數字4不出現在首位和末位,數字1,3,5中有且僅有兩個數字相鄰,則滿足條件的不同五位數的個數是( )A48B60C72D1207把函數圖象
3、上各點的橫坐標伸長為原來的2倍,縱坐標不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為( )ABCD8定義在R上的函數滿足,為的導函數,已知的圖象如圖所示,若兩個正數滿足,的取值范圍是( )ABCD9下列說法正確的是( )A“若,則”的否命題是“若,則”B在中,“”是“”成立的必要不充分條件C“若,則”是真命題D存在,使得成立10已知命題p:若,則;命題q:,使得”,則以下命題為真命題的是( )ABCD11已知雙曲線()的漸近線方程為,則( )ABCD12已知,則,不可能滿足的關系是()ABCD二、填空題:本題共4小題,每小題5分,共20分。13對于任意的正數,不等式恒成立,則的最大
4、值為_.14 “直線l1:與直線l2:平行”是“a2”的_條件(填“充分不必要”、“必要不充分”、“充分必要”或“既不充分又不必要”)15已知的展開式中第項與第項的二項式系數相等,則_.16下圖是一個算法的流程圖,則輸出的x的值為_三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(12分)已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為(1)求橢圓的方程;(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由18(12分)已知,分別為內角,的對邊,且.(1)證明:;(2
5、)若的面積,求角.19(12分)已知某種細菌的適宜生長溫度為1227,為了研究該種細菌的繁殖數量(單位:個)隨溫度(單位:)變化的規律,收集數據如下:溫度/14161820222426繁殖數量/個2530385066120218對數據進行初步處理后,得到了一些統計量的值,如表所示:20784.11123.8159020.5其中,.(1)請繪出關于的散點圖,并根據散點圖判斷與哪一個更適合作為該種細菌的繁殖數量關于溫度的回歸方程類型(給出判斷即可,不必說明理由);(2)根據(1)的判斷結果及表格數據,建立關于的回歸方程(結果精確到0.1);(3)當溫度為27時,該種細菌的繁殖數量的預報值為多少?參
6、考公式:對于一組數據,其回歸直線的斜率和截距的最小二成估計分別為,參考數據:.20(12分)設函數,.(1)求函數的單調區間;(2)若函數有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.21(12分)在極坐標系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標,直線的參數方程為(為參數),與交于,兩點(1)寫出曲線的直角坐標方程和直線的普通方程;(2)設點;若、成等比數列,求的值22(10分)在平面直角坐標系中,直線的參數方程為(為參數)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為(1)求直線的普通方程與曲線的直角坐標方程;(2)若射線與和
7、分別交于點,求參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】由函數f(x)的圖象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上單調遞增,又g(0)1b0,g(1)e2b0,根據函數的零點存在性定理可知,函數g(x)的零點所在的區間是(0,1),故選B.2C【解析】根據題目所給圖像,填寫好表格,由表格數據選出正確選項.【詳解】根據雷達圖得到如下數據:數學抽象邏輯推理數學建模直觀想象數學運算數據分析甲454545乙343354由數據可知
8、選C.【點睛】本題考查統計問題,考查數據處理能力和應用意識.3A【解析】將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.4B【解析】根據圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即也就是點到圓的圓心的距離大于半徑即點與圓的位置關系是點在圓外故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題5D【解析】分析:根據平面向量的數量積可得,再結合圖形求出與方向上的投影即可.詳解:如圖所示:,又,在方向
9、上的投影是:,故選D.點睛:本題考查了平面向量的數量積以及投影的應用問題,也考查了數形結合思想的應用問題.6A【解析】對數字分類討論,結合數字中有且僅有兩個數字相鄰,利用分類計數原理,即可得到結論【詳解】數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個數字出現在第位時,同理也有個數字出現在第位時,數字中相鄰的數字出現在第位或者位,共有個故滿足條件的不同的五位數的個數是個故選【點睛】本題主要考查了排列,組合及簡單計數問題,解題的關鍵是對數字分類討論,屬于基礎題。7D【解析】試題分析:把函數圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那
10、么所得圖象的一個對稱中心為,故選D.考點:三角函數的圖象與性質.8C【解析】先從函數單調性判斷的取值范圍,再通過題中所給的是正數這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數在區間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數單調性和不等式的基礎知識,屬于中檔題.9C【解析】A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據冪函數的性質判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故 A錯.B:在中,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則
11、”,故C正確.D:由冪函數在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎題.10B【解析】先判斷命題的真假,進而根據復合命題真假的真值表,即可得答案.【詳解】,因為,所以,所以,即命題p為真命題;畫出函數和圖象,知命題q為假命題,所以為真.故選:B. 【點睛】本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.11A【解析】根據雙曲線方程(),確定焦點位置,再根據漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.【點睛】本題主要考查雙曲線的幾何性質,還考查了運算求解的能力,屬于基礎題.12C【解析】根據即可得出
12、,根據,即可判斷出結果【詳解】;,;,故正確;,故C錯誤;,故D正確故C【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題二、填空題:本題共4小題,每小題5分,共20分。13【解析】根據均為正數,等價于恒成立,令,轉化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數,不等式恒成立,等價于恒成立,令則,當且僅當即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數的取值范圍,關鍵在于合理進行等價變形,此題可以構造二次函數求解,也可利用基本不等式求解.14必要不充分【解析】先求解直線l1與直線l2平行的等價條件,然后進行判斷.【
13、詳解】“直線l1:與直線l2:平行”等價于a2,故“直線l1:與直線l2:平行”是“a2”的必要不充分條件故答案為:必要不充分.【點睛】本題主要考查充分必要條件的判定,把已知條件進行等價轉化是求解這類問題的關鍵,側重考查邏輯推理的核心素養.15【解析】根據的展開式中第項與第項的二項式系數相等,得到,再利用組合數公式求解.【詳解】因為的展開式中第項與第項的二項式系數相等,所以,即 ,所以,即 ,解得.故答案為:10【點睛】本題主要考查二項式的系數,還考查了運算求解的能力,屬于基礎題.161【解析】利用流程圖,逐次進行運算,直到退出循環,得到輸出值.【詳解】第一次:x4,y11,第二次:x5,y3
14、2,第三次:x1,y14,此時141013,輸出x,故輸出x的值為1故答案為:.【點睛】本題主要考查程序框圖的識別,“還原現場”是求解這類問題的良方,側重考查邏輯推理的核心素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17(1);(2)見解析【解析】(1)由面積最大值可得,又,以及,解得,即可得到橢圓的方程,(2)假設軸上存在點,是以為直角頂點的等腰直角三角形,設,線段的中點為,根據韋達定理求出點的坐標,再根據,即可求出的值,可得點的坐標.【詳解】(1)面積的最大值為,則:又,解得:,橢圓的方程為:(2)假設軸上存在點,是以為直角頂點的等腰直角三角形設,線段的中點為由,消
15、去可得:,解得:, 依題意有,由可得:,可得:由可得:,代入上式化簡可得:則:,解得:當時,點滿足題意;當時,點滿足題意故軸上存在點,使得是以為直角頂點的等腰直角三角形【點睛】本題考查了橢圓的方程,直線和橢圓的位置關系,斜率公式,考查了運算能力和轉化能力,屬于中檔題.18(1)見解析;(2)【解析】(1)利用余弦定理化簡已知條件,由此證得(2)利用正弦定理化簡(1)的結論,得到,利用三角形的面積公式列方程,由此求得,進而求得的值,從而求得角.【詳解】(1)由已知得,由余弦定理得,.(2)由(1)及正弦定理得,即,.,.【點睛】本小題主要考查余弦定理、正弦定理解三角形,考查三角形的面積公式,考查
16、化歸與轉化的數學思想方法,考查運算求解能力,屬于中檔題.19(1)作圖見解析;更適合(2)(3)預報值為245【解析】(1)由散點圖即可得到答案;(2)把兩邊取自然對數,得,由 計算得到,再將代入可得,最終求得,即;(3)將代入中計算即可.【詳解】解:(1)繪出關于的散點圖,如圖所示:由散點圖可知,更適合作為該種細菌的繁殖數量關于的回歸方程類型;(2)把兩邊取自然對數,得,即,由.,則關于的回歸方程為;(3)當時,計算可得;即溫度為27時,該種細菌的繁殖數量的預報值為245.【點睛】本題考查求非線性回歸方程及其應用的問題,考查學生數據處理能力及運算能力,是一道中檔題.20(1)見解析;(2)(
17、i)(ii)證明見解析【解析】(1)求出導函數,分類討論即可求解;(2)(i)結合(1)的單調性分析函數有兩個零點求解參數取值范圍;(ii)設,通過轉化,討論函數的單調性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調遞增,當時,的解集為,的解集為,所以的單調增區間為,的單調減區間為;(2)(i)由(1)可知,當時,在上單調遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調遞增,所以,所
18、以,即,所以單調遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點睛】此題考查利用導函數處理函數的單調性,根據函數的零點個數求參數的取值范圍,通過等價轉化證明與零點相關的命題.21 (1) 曲線的直角坐標方程為,直線的普通方程為 ; (2) 【解析】(1)由極坐標與直角坐標的互化公式和參數方程與普通方程的互化,即可求解曲線的直角坐標方程和直線的普通方程;(2)把的參數方程代入拋物線方程中,利用韋達定理得,可得到,根據因為,成等比數列,列出方程,即可求解【詳解】(1)由題意,曲線的極坐標方程可化為,又由,可得曲線的直角坐標方程為,由直線的參數方程為(為參數),消去參數,得,即直線的普通方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級地理上冊 第四章 中國的經濟發展 第一節 交通運輸 第2課時 我國鐵路干線的分布教學設計 (新版)新人教版
- 3學會自我保護 (公開課一等獎創新教學設計)統編版道德與法治七年級下冊
- 2創新永無止境 公開課一等獎創新教學設計(表格式)-1
- UTF-8‘’Brand KPIs for ready-made-food Aunt Bessie's in the United Kingdom-外文版培訓課件(2025.2)
- 微量泵使用與護理
- 案例分析1人感染高致病性禽流感疫情52
- 收藏品質押借款合同
- 倉庫租賃買賣合同樣本
- 軟件開發合同技術創新目標
- 《探求知識的互聯互通》課件
- 2025年山東省春季高考語文模擬試卷試題(含答案解析)
- 2024版《糖尿病健康宣教》課件
- DB11∕T 686-2023 透水磚路面施工與驗收規范
- 山東虛擬電廠商業模式介紹
- 醫療技術臨床應用管理培訓課件
- 敏捷開發管理咨詢合同
- 病區安全管理新護士上崗前培訓課件
- 汽車調光玻璃行業專題報告(技術路徑、市場空間、競爭格局等)-2024-08-零部件
- 老年人血脂異常管理中國專家共識(2022版)
- GB/T 44127-2024行政事業單位公物倉建設與運行指南
- 工裝裝修合同電子版
評論
0/150
提交評論