




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、本課程的主要內容本課程的主要內容固體物理固體物理晶格動力學晶格動力學固體電子論固體電子論1. 1. 晶體結構晶體結構2. 2. 固體的結合固體的結合3. 3. 晶格振動和熱學性質晶格振動和熱學性質4. 4. 能帶理論能帶理論5. 5. 外場中電子的運動外場中電子的運動6. 6. 金屬電子論金屬電子論原子核的運動規律原子核的運動規律核外電子的運動規律核外電子的運動規律晶格動力學晶格動力學固體電子論固體電子論第一章第一章 晶體結構晶體結構1-1 1-1 晶體特征和晶格的實例晶體特征和晶格的實例1-2 1-2 晶體的周期性晶體的周期性 1-3 1-3 晶向,晶面和它們的標志晶向,晶面和它們的標志1-
2、4 1-4 倒格子倒格子1-5 1-5 晶體的宏觀對稱性晶體的宏觀對稱性1-6 1-6 點群點群1-7 1-7 晶格的對稱性晶格的對稱性1-8 1-8 晶體表面的幾何結構晶體表面的幾何結構1-9 1-9 X-X-射線衍射與晶體結構射線衍射與晶體結構摘摘 要要晶格結構晶格結構對稱性對稱性晶體,非晶體,準晶晶體,非晶體,準晶 (各有何特點各有何特點)1. 1. 固體類型:固體類型:1 晶體特征與晶格的實例晶體特征與晶格的實例 2.2.晶體種類晶體種類單晶體,多晶體,液晶。單晶體,多晶體,液晶。3. 3. 單晶體的宏觀特征單晶體的宏觀特征 1) 1) 對稱性,外型規則對稱性,外型規則 2) 2) 有
3、確定的熔點有確定的熔點 3) 3) 物理性質各向異性物理性質各向異性4) 4) 解理性解理性. .5) 5) 晶面角守恒晶面角守恒. .晶格實例晶格實例1. 1. 簡單立方簡單立方2. 2. 體心立方體心立方3. 3. 密堆積晶格密堆積晶格(a) (a) 六角密排六角密排(b) (b) 面心立方面心立方 立方密排立方密排4 4 金剛石結構金剛石結構5. 5. 簡單化合物晶體簡單化合物晶體1)1)NaCl NaCl 結構結構2)2)閃鋅礦結構閃鋅礦結構3)3)CsClCsCl結構結構以上各種晶格的配位以上各種晶格的配位數及屬于簡單或復式數及屬于簡單或復式晶格?晶格?化合物晶體中各種化合物晶體中各
4、種原子單獨構成什么原子單獨構成什么晶格?怎樣套構?晶格?怎樣套構?2 晶格的周期性晶格的周期性(1)(1)原胞原胞:(2)(2)基矢:基矢:(3)(3)基元:基元:(4)(4)晶胞晶胞 ( (單胞單胞) )2. 2. 幾種常見結構的原胞幾種常見結構的原胞 1 1、概念、概念(5)(5)布拉菲格子,及其如何表示晶體結構布拉菲格子,及其如何表示晶體結構(6)(6)簡單晶格,復式晶格簡單晶格,復式晶格(1)(1)簡單立方晶格簡單立方晶格(2)(2)體心立方晶格體心立方晶格(3)(3)面心立方晶格面心立方晶格(4)(4)六角密排晶格六角密排晶格每個原胞和晶胞中每個原胞和晶胞中有幾個原子?有幾個原子?1
5、.1.晶列晶列2.2.晶向晶向3 晶向,晶面和它們的標志晶向,晶面和它們的標志3.3.晶向的表示法晶向的表示法 4.4.晶晶 面面密勒指數,如何確定米勒指數密勒指數,如何確定米勒指數 簡單立方晶格有多少等效晶面?簡單立方晶格有多少等效晶面? 簡單立方晶格的晶向標志簡單立方晶格的晶向標志 棱方向,棱方向,面對角線方向,面對角線方向,體對角線方向體對角線方向各有多少幾個等價方向?各有多少幾個等價方向? 4 倒格子倒格子倒格子基矢的定義倒格子基矢的定義)(2321321aaaaab)(2321132aaaaab)(2321213aaaaab倒格子基矢的性質倒格子基矢的性質2()20()ijijija
6、 bij3, 2, 1,ji倒格子基矢的性質倒格子基矢的性質a.a.正格子原胞體積和倒格子原胞體積的關系正格子原胞體積和倒格子原胞體積的關系 b. 正格矢正格矢 與倒格矢與倒格矢 的關系的關系hKlRmKRhl2 ,(m為整數)c 倒格矢倒格矢 是晶面指數為是晶面指數為 所對應的晶面族的法線。所對應的晶面族的法線。),(321hhh332211bhbhbhKh結晶學的倒格子結晶學的倒格子簡單立方倒格子為簡單立方簡單立方倒格子為簡單立方體心立方倒格子為面心立方體心立方倒格子為面心立方根據公式能求出倒根據公式能求出倒格子基矢格子基矢六角密排倒格子為六角密排六角密排倒格子為六角密排cba120,90
7、六角六角a35 晶體的宏觀對稱性晶體的宏觀對稱性 繞軸旋轉繞軸旋轉2.2.旋轉旋轉- -反演反演( (反演,鏡面反演,鏡面) )點對稱操作點對稱操作對稱操作對稱操作 繞軸旋轉繞軸旋轉2.2.旋轉旋轉- -反演反演3.3.空間平移空間平移 晶體的宏觀對稱性只有晶體的宏觀對稱性只有8 8種獨立的對稱操作:種獨立的對稱操作: 1 1,2 2,3 3,4 4,6 6, ( ( i i ), ( ), (m m) ) 和和 124能證明為何晶體中沒有能證明為何晶體中沒有5 5次對稱性?次對稱性?第二章 晶體結合的類型?晶體結合的類型? 晶體結合的物理本質?晶體結合的物理本質? 固體結合的類型與固體性質之
8、間的聯系?固體結合的類型與固體性質之間的聯系? 2.1 離子性結合離子性結合 1 1、 離子晶體的結合力離子晶體的結合力 短程排斥作用和庫侖吸引作用相抵消時,晶體達短程排斥作用和庫侖吸引作用相抵消時,晶體達到的結構平衡。到的結構平衡。 3. 3. 離子晶體的結合能離子晶體的結合能 1) 1) 晶體的庫侖能晶體的庫侖能 一對正負離子的平均庫侖能量一對正負離子的平均庫侖能量rqnnnrqnnnnnn02,2/1232221024)() 1(4321321 2 2) ) 晶體的排斥能晶體的排斥能 3 3) ) 晶體的內能晶體的內能 (NaClNaCl為例)為例)6402nrbrqNUnrBrAN4)
9、 4) 晶體的結合能計算晶體的結合能計算內能內能 體積函數的一般形式:體積函數的一般形式:000pdVdUV平衡條件:平衡時內能為極小值平衡條件:平衡時內能為極小值以氫分子的量子理論為基礎。以氫分子的量子理論為基礎。共價鍵的基本特征共價鍵的基本特征:方向性,飽和性方向性,飽和性。 2.2 共價結合共價結合 分子軌道法分子軌道法選取原子軌道波函數的線性組合組成分子軌道波函數選取原子軌道波函數的線性組合組成分子軌道波函數反鍵態反鍵態)(),(BABACC成鍵態成鍵態雜化軌道雜化軌道:同一原子中,能量相近的原子軌道混合起來,形:同一原子中,能量相近的原子軌道混合起來,形成成鍵能力更強的新軌道。成成鍵
10、能力更強的新軌道。 雜化軌道數雜化軌道數:等于參加雜化的原子軌道數目之和。:等于參加雜化的原子軌道數目之和。 1 1、金屬晶體的平衡、金屬晶體的平衡斥力與庫侖引力的平衡斥力與庫侖引力的平衡. .斥力來源斥力來源: : (i) (i) 體積減小,電子密度增大,電子的動體積減小,電子密度增大,電子的動能將增加能將增加, , 電子動能正比于電子動能正比于( (電子云密度電子云密度) )2/32/3. . (ii) (ii) 電子云發生重疊,將產生強烈的排斥作用電子云發生重疊,將產生強烈的排斥作用. . 2.3 金屬性結合金屬性結合 2 2、金屬性結合特點、金屬性結合特點 a. a. 電子公有化。電子
11、公有化。 b. b. 對原子具體排列沒有特殊要求;對原子具體排列沒有特殊要求; c. c. 范性很大范性很大。 2.4 范德瓦耳斯結合范德瓦耳斯結合 兩個原子的相互作用勢能兩個原子的相互作用勢能)()(4)(612rrru勒納瓊斯(勒納瓊斯(Lennard-Jones)勢)勢范德瓦爾斯結合是一種瞬時的電偶極矩感應作用。范德瓦爾斯結合是一種瞬時的電偶極矩感應作用。 0roru(r)u0第三章第三章 晶格振動和熱學性質晶格振動和熱學性質 3.1 3.1 簡諧近似和簡正坐標簡諧近似和簡正坐標 3.2 3.2 一維單原子鏈一維單原子鏈 3.3 3.3 一維雙原子鏈一維雙原子鏈 聲學波和光學波聲學波和光
12、學波 3.4 3.4 三維晶格的振動三維晶格的振動 3.6 3.6 確定晶格振動譜的實驗方法確定晶格振動譜的實驗方法 3.8 3.8 晶體熱容的量子理論晶體熱容的量子理論 3.10 3.10 晶格的狀態方程和熱膨脹晶格的狀態方程和熱膨脹 3.9 3.9 晶格振動的模式密度晶格振動的模式密度3.1 3.1 簡諧近似和簡正坐標簡諧近似和簡正坐標 振動模振動模小振動小振動簡諧近似,簡諧近似,簡諧振動簡諧振動簡正坐標,簡正坐標,正交變換正交變換3.2 3.2 一維單原子鏈一維單原子鏈 1 1、根據牛頓定律寫出原子運動方程,導出色散關系、根據牛頓定律寫出原子運動方程,導出色散關系. . adrd)(22
13、相鄰原子間的作用力相鄰原子間的作用力ddf彈性恢復力正比于相對位移彈性恢復力正比于相對位移作簡諧近似,作簡諧近似,222)(21)()(adrdaa力常數力常數 2 2、格波的色散關系(、格波的色散關系(可以直接引用,也可自己推導可以直接引用,也可自己推導) )2sin(2)(aqmq3 3、 q 的物理意義的物理意義:沿波的傳播方向(即沿沿波的傳播方向(即沿q q的方向)上,的方向)上, 單位距離兩點間的振動位相差。單位距離兩點間的振動位相差。4 4、晶格格波與連續介質波的區別晶格格波與連續介質波的區別長波極限長波極限短波極限短波極限5 5、概念、概念:聲子,格波,振動模,聲子的準動量聲子,
14、格波,振動模,聲子的準動量 聲子是晶格原子集體運動狀態的激發單元聲子是晶格原子集體運動狀態的激發單元3.3 3.3 一維雙原子鏈一維雙原子鏈 聲學波和光學波聲學波和光學波 1、一維復式晶格中存在一維復式晶格中存在兩種獨立的格波兩種獨立的格波sin)(41 1)(21222aqMmmMmMMmsin)(41 1)(21222aqMmmMmMMm 光學波光學波 聲學波聲學波2. 2. 兩種格波的振幅兩種格波的振幅aqmABcos22)(2aqmABcos22)(2 光學波光學波 聲學波聲學波4. 4. 色散關系的特點色散關系的特點 (1) (1) 短波極限短波極限maxmin)()(gap2. 2
15、. 長波極限長波極限2()aqmM 一維雙原子鏈的長聲學波一維雙原子鏈的長聲學波長聲學波中相鄰原子的振動長聲學波中相鄰原子的振動1)(AB光學波光學波 長波極限長波極限2,mMmMMmAB)(2 2、三維晶格中的波矢、三維晶格中的波矢3.4 3.4 三維晶格的振動三維晶格的振動 1. 1. 三維復式格子三維復式格子qklRtikeAkl格波的一般形式格波的一般形式如果波矢改變一個倒格矢如果波矢改變一個倒格矢 原子振動狀態不受影響原子振動狀態不受影響nGqqq q 限制在一個倒格矢原胞內限制在一個倒格矢原胞內333222111bNhbNhbNhq3、q 空間每一個點占據空間每一個點占據 的體積的
16、體積對應倒格子原胞體積對應倒格子原胞體積)(*3210bbbv第一布里淵區體積第一布里淵區體積 倒格矢原胞體積。倒格矢原胞體積。習慣做法:習慣做法:選取第一布里淵區為波矢取值區域選取第一布里淵區為波矢取值區域:。:。 123123*()bbbVNNN0*vN4、q 空間的密度:空間的密度:32/1VV 總的格波數總的格波數( (即獨立振動的個數即獨立振動的個數) )為為3 3nNnN,等于,等于體系的自由度數體系的自由度數;振動波矢振動波矢q q 數目數目 = = 晶體原胞數晶體原胞數N N. (. (對應橫軸上的對應橫軸上的q q點數點數) )3nN3nN個振動包含在個振動包含在3n3n 支
17、格波中支格波中. .3n3n支格波支格波: : 有有 3 3支聲學波和支聲學波和 3 3n n-3 -3 支光學波支光學波. .格波支數為格波支數為3n3n,即等于,即等于原胞中原子的自由度數原胞中原子的自由度數. .(縱軸曲線的條數)(縱軸曲線的條數)nNiiiqqnE31)(21)(6 6、晶格振動總的能量、晶格振動總的能量)(qi晶格振動能量量子晶格振動能量量子, , 聲子聲子5 5、關于格波、關于格波3.8 3.8 晶體熱容的量子理論晶體熱容的量子理論 德拜模型德拜模型 :解決了那些問題?主要觀點?解決了那些問題?主要觀點?B B、大于某一頻率的短波是不存在的。、大于某一頻率的短波是不
18、存在的。A A、彈性波近似:有、彈性波近似:有1 1支縱波和支縱波和2 2支獨立的橫波,支獨立的橫波,其波速不同。其波速不同。ltCqForLognitudinalWaveCqForTransverseWave色散關系色散關系晶體熱容量晶體熱容量 34512)(DVTRTC 德拜德拜T 3定律定律實驗結果:低溫下金屬的熱容實驗結果:低溫下金屬的熱容3ATTCV溫度不太低時,可以忽略電子的貢獻溫度不太低時,可以忽略電子的貢獻愛因斯坦模型與德拜模型愛因斯坦模型與德拜模型愛因斯坦溫度和德拜溫度愛因斯坦溫度和德拜溫度T 電子對比熱的貢獻電子對比熱的貢獻, , 即電子熱容即電子熱容3AT 晶格振動對比熱
19、的貢獻晶格振動對比熱的貢獻, , 即晶格熱容即晶格熱容3.9 3.9 晶格振動模式密度晶格振動模式密度三維,三維, 兩維,兩維, 一維一維0( )limng 在在q q空間,晶格振動模是均勻分布的,狀態密度空間,晶格振動模是均勻分布的,狀態密度3(2 )V2L )2(2S晶格振動模式密度晶格振動模式密度 單位頻率間隔的單位頻率間隔的振動模式數目振動模式數目 晶格振動模式密度函數晶格振動模式密度函數: :3( )(2 )( )qVdsgq1 1、根據公式如何求一維單原子鏈的模式密度?、根據公式如何求一維單原子鏈的模式密度?4sin()2aqm2221( )mNg2 2、如何求德拜模型的模式密度?
20、、如何求德拜模型的模式密度?振動頻率與波矢成正比振動頻率與波矢成正比cq( )qqc3( )(2 )( )qVdsgq223( )2Vgc24dsq德拜近似的核心就是假定德拜近似的核心就是假定:連續介質彈性波連續介質彈性波第四章第四章 能帶理論能帶理論 4-1 4-1 布洛赫定理布洛赫定理4-2 4-2 一維周期場中近自由電子近似一維周期場中近自由電子近似4-3 4-3 三維周期場中近自由電子近似三維周期場中近自由電子近似4-5 4-5 緊束縛近似原子軌道線性組合法緊束縛近似原子軌道線性組合法4-6 4-6 晶體能帶的對稱性晶體能帶的對稱性4-7 4-7 能態密度和費米面能態密度和費米面1 1
21、 固體中的電子不再束縛于個別的原子,而是在整個固體內固體中的電子不再束縛于個別的原子,而是在整個固體內運動,成為運動,成為共有化電子共有化電子. .2.2.電子的波動方程電子的波動方程:能帶理論是單電子近似理論,把每個電子的運動看成能帶理論是單電子近似理論,把每個電子的運動看成是獨立的在一個等效勢場中的運動。是獨立的在一個等效勢場中的運動。ErVm)(222)()(nRrVrV晶格周期性勢場晶格周期性勢場:4-1 4-1 布洛赫定理布洛赫定理1. 1. 布洛赫定理的內容:布洛赫定理的內容: 2 2、布洛赫函數:平面波和周期函數的成績、布洛赫函數:平面波和周期函數的成績)()(ruerkrk i
22、)()(reRrnRk in4 4.平移算符本征值平移算符本征值 與簡約波矢的關系與簡約波矢的關系 對應于平移算符本征值的量子數,原胞之間電對應于平移算符本征值的量子數,原胞之間電子波函數位相的變化。子波函數位相的變化。3.3.簡約波矢簡約波矢 的物理意義的物理意義 333222111bNlbNlbNlk4.2 一維周期場中電子運動的近自由電子近似一維周期場中電子運動的近自由電子近似 1. 1. 非簡并微擾計算非簡并微擾計算 零級哈密頓零級哈密頓哈密頓量哈密頓量0HHHVVxVH)(VdxdmH22202微擾哈密頓微擾哈密頓2222222(2 ) 2nknVkEVnmkkmaxaninnikx
23、ikxkeankkmVeLeLx2222)2(211)( 什么情況下微擾矩陣元不為零?什么情況下微擾矩陣元不為零? 什么情況下非簡并微擾失效?為什么會失效?什么情況下非簡并微擾失效?為什么會失效? 入射波矢和散射波矢滿足什么關系時能量發散?二入射波矢和散射波矢滿足什么關系時能量發散?二者分別處于布離淵區什么位置?者分別處于布離淵區什么位置? Vn的物理意義是什么?的物理意義是什么?2. 2. 簡并微擾計算簡并微擾計算 構造零級簡并波函數構造零級簡并波函數00( )kkxab0)()(2222xExVdxdmikxkeL10 xikkeL01其中其中)1 (ank)1 (ank0*0()0 &a
24、mp;()0knnkEE a V bV aEE bV Vn n表示的是周期場表示的是周期場V(x)V(x)的第的第n n個傅里葉系數個傅里葉系數. .( )021| ( )|( )( )2| ( )|0ai kkkknk V x kV neVdaakknk V x kanV*nnVk V kVk V k 0*0()0 &()0knnkEE a V bV aEE b得到兩個關于得到兩個關于a, b a, b 的線型方程組:的線型方程組:能量本征值能量本征值4)(21220000nkkkkVEEEEEnkkVEE00(1)20002000nkkknkkkVEEEEVEEE k k和和kk能
25、級相互作用的結果是,原來能級較高的能級相互作用的結果是,原來能級較高的k k 提高,原來能級較低的提高,原來能級較低的k k下降。下降。 相當于能級間相當于能級間“排斥作用排斥作用” 。00kkEE(2)nkkVEE00 0i)i):當0nknkkkVEEVEEEE00kkEEnVnV0E0Eii)ii) :當02020) 12()21 (VnTTEVnTTEEnnnn3.3.能帶和帶隙(禁帶)能帶和帶隙(禁帶) 1) 1) 能帶底部,能量向上彎曲;能帶頂部,能量向下彎曲能帶底部,能量向上彎曲;能帶頂部,能量向下彎曲2) 2) 禁帶出現在波矢空間倒格矢的中點處禁帶出現在波矢空間倒格矢的中點處,
26、(,(布里淵區邊界布里淵區邊界) )3) 3) 禁帶的寬度禁帶的寬度ngVVVVE2,2,2,2321 用簡約波矢表示能帶:用簡約波矢表示能帶:需要標明:需要標明:1)1) 它屬于哪一個能帶(能帶標號它屬于哪一個能帶(能帶標號n n ) )2)2) 它的簡約波矢它的簡約波矢 是什么?是什么?k4.3 4.3 三維周期場中電子運動的近自由電子近似三維周期場中電子運動的近自由電子近似 1. 1. 模型和微擾計算模型和微擾計算 222002nnkkkk GVkEVmEE即即: 只有當只有當 k 和和 k 相差為一倒格子矢量相差為一倒格子矢量 Gn 時時, 該該微擾矩陣元才不為零微擾矩陣元才不為零.0
27、00)(1dVeVnGin1 12 23 3nkkn bn bn bG22nGkk0)21(nnGkG當當 和和 的零級能量相等時,的零級能量相等時,一級修正一級修正波函數和二級能量修正趨于無窮大。波函數和二級能量修正趨于無窮大。 knGkk上述方程的幾何意義:上述方程的幾何意義:當波矢位于倒格矢垂直平分面上以及附近時,當波矢位于倒格矢垂直平分面上以及附近時,一一級修正波函數和二級能量修正趨于無窮大,級修正波函數和二級能量修正趨于無窮大,非簡非簡并微擾不再適用。并微擾不再適用。2. 2. 布里淵區和能帶布里淵區和能帶 第第n布立淵區:從布立淵區:從n-1區出發,只經過一個垂直區出發,只經過一個
28、垂直平分面,所能達到的點的集合。平分面,所能達到的點的集合。 每個區域內每個區域內E E k k 是連續變化的,而在這些區域的是連續變化的,而在這些區域的 邊界上能量邊界上能量E(k)E(k)發生突變。發生突變。幾個結論幾個結論 每一個布里淵區的體積相同,為倒格子原胞的體積。每一個布里淵區的體積相同,為倒格子原胞的體積。 每個能帶的量子態每個能帶的量子態 ( (能級能級) ) 數目:數目:2N2N(計入自旋)。(計入自旋)。 不同的布里淵區對應不同的能帶。不同的布里淵區對應不同的能帶。高布立淵區是由若干分離的小塊組成。通過平移倒高布立淵區是由若干分離的小塊組成。通過平移倒 格矢,它們會填滿第一
29、布立淵區,不會重疊,不會格矢,它們會填滿第一布立淵區,不會重疊,不會 遺漏。遺漏。能帶的三種布立淵區圖象能帶的三種布立淵區圖象3. 3. 幾種晶格的布里淵區幾種晶格的布里淵區 1) 1) 簡單立方簡單立方 2) 2) 體心立方體心立方3) 3) 面心立方面心立方4) 4) 畫出兩維正方格子,長方格子,六角密排畫出兩維正方格子,長方格子,六角密排 的第一,第二,第三布離淵區。的第一,第二,第三布離淵區。4.5 4.5 緊束縛方法緊束縛方法1. 1. 緊束縛近似方法的思想緊束縛近似方法的思想: : 電子在一個原子附近時,主要受到該原子勢場的作用。電子在一個原子附近時,主要受到該原子勢場的作用。 把
30、孤立原子哈密頓作為零級近似,將其它原子勢場的作把孤立原子哈密頓作為零級近似,將其它原子勢場的作 用看作是微擾。用看作是微擾。 將原子軌道波函數的線性組合為晶體中電子的波函數。將原子軌道波函數的線性組合為晶體中電子的波函數。 求解原子能級和晶體中電子能帶之間的關系求解原子能級和晶體中電子能帶之間的關系. .NearestRRk isisseRJJkE)()(0在考慮到最近鄰重疊,能量可寫為在考慮到最近鄰重疊,能量可寫為2. 2. 原子能級與能帶的對應原子能級與能帶的對應 1 1、一個原子能級、一個原子能級 i i 對應一個能帶,不同的能級對應不同的對應一個能帶,不同的能級對應不同的 能帶。能帶。
31、 能量較低的能級對應的能帶較窄,內層電子;能量較低的能級對應的能帶較窄,內層電子; 能量較高的能級對應的能帶較寬,外層電子。能量較高的能級對應的能帶較寬,外層電子。2 2、有時原子能級與、有時原子能級與能帶間不存在簡單的一一對應關系。能帶間不存在簡單的一一對應關系。可能有能帶重疊,或者原子態之間相互作用。可能有能帶重疊,或者原子態之間相互作用。3 3、什么是價帶和導帶?、什么是價帶和導帶?4.7 能態密度和費密面能態密度和費密面 1. 1. 能態密度函數能態密度函數 0( )limEZN EE 3( )2(2 )kVdSN EE(1 1)問題的關鍵,求解)問題的關鍵,求解E(k)E(k)關系,
32、等能面的關系,等能面的dSdSdEdZ(2 2)也可根據定義直接求解。)也可根據定義直接求解。2. 2. 費米面定義費米面定義 零溫下零溫下K K空間中占有電子與不占有電子的分界面,空間中占有電子與不占有電子的分界面,稱為費米面。稱為費米面。費米波矢、費米波矢、費米動量、費米動量、費米速度費米速度費米溫度費米溫度 費米能、費米能、3. 3. 堿金屬,二價堿土金屬,四族元素的能帶特點。堿金屬,二價堿土金屬,四族元素的能帶特點。第五章第五章 晶體中電子在電場和磁場中的運動晶體中電子在電場和磁場中的運動 5.1 5.1 準經典運動準經典運動 1、波包的定義、波包的定義2、波包與準經典粒子之間的關系(
33、位置和速度)、波包與準經典粒子之間的關系(位置和速度)3、電子看作準經典粒子的條件、電子看作準經典粒子的條件4、電子準經典運動的兩個基本關系式、電子準經典運動的兩個基本關系式Fdtkd)(Evkk15、有效質量在價帶頂和導帶底的特點?、有效質量在價帶頂和導帶底的特點? 6 6、有效質量隨能帶的寬窄有何變化?、有效質量隨能帶的寬窄有何變化? 7、為何有效質量有時為負?、為何有效質量有時為負?8、在緊束縛近似中有效質量與重疊積分的關系?、在緊束縛近似中有效質量與重疊積分的關系?5.2 5.2 恒定電場作用下電子的運動恒定電場作用下電子的運動 1、什么是布洛赫振蕩?、什么是布洛赫振蕩?2、觀察布洛赫
34、振蕩的條件是什么?、觀察布洛赫振蕩的條件是什么? 為什么很難實現布洛赫振蕩?為什么很難實現布洛赫振蕩?3、隧道效應,齊納擊穿、隧道效應,齊納擊穿5.3 5.3 導體、絕緣體和半導體的能帶論解釋導體、絕緣體和半導體的能帶論解釋 1、為什么滿帶不導電?未滿帶導電?、為什么滿帶不導電?未滿帶導電?2、什么是近滿帶?什么是空穴?空穴導電的特點?、什么是近滿帶?什么是空穴?空穴導電的特點? 3、空穴導電性,電子導電性,混合導電性。、空穴導電性,電子導電性,混合導電性。4、半金屬能帶有何特點?、半金屬能帶有何特點?P255.5.4 5.4 在恒定磁場中電子的運動在恒定磁場中電子的運動1 1、恒定磁場中電子
35、運動的基本方程:、恒定磁場中電子運動的基本方程:BkvqdtkdkEkvk)()(1)(2 2、電子在、電子在k k空間的運動軌跡是什么?空間的運動軌跡是什么? 是垂直于磁場的平面與等能面的交線是垂直于磁場的平面與等能面的交線. .3 3、電子在實空間的運動軌跡是什么?、電子在實空間的運動軌跡是什么?4 4、什么是朗道能級?當朗道能級與費米能級對準時系、什么是朗道能級?當朗道能級與費米能級對準時系 統的能量是極大還是極小?統的能量是極大還是極小?4 4、旺尼爾、旺尼爾 ( (WannierWannier) ) 函數函數 nnnRk inkRrWeNrkn)(1),(WannierWannier
36、 函數是布洛赫函數在正格矢空間的傅立葉函數是布洛赫函數在正格矢空間的傅立葉展開系數展開系數(1)(1)一個能帶的一個能帶的WannierWannier 函數是由同一個能帶的布洛赫函數是由同一個能帶的布洛赫 函數所定義:函數所定義:(2 2)旺尼爾函數滿足正交關系)旺尼爾函數滿足正交關系,*)()(mmmnmnrdRrWRrW1()( , )nik RnnnkkW rRek rN 6.1 6.1 費米統計和電子熱容量費米統計和電子熱容量 第六章第六章 金屬電子論金屬電子論 的物理意義:的物理意義:1 1、費米分布函數、費米分布函數2 2、k k空間的費米面在零溫和非零溫有何特點?空間的費米面在零
37、溫和非零溫有何特點?0)()(dEENEfN3、金屬中總的電子數、金屬中總的電子數4、近自由電子的費米能隨溫度如何變化?、近自由電子的費米能隨溫度如何變化? 為什么在室溫下可以不計這一變化?為什么在室溫下可以不計這一變化?)(121 2020FBFFETkEE3. 3. 電子量子熱容量電子量子熱容量 BFBVkETkNC)(2020為什么量子熱容量遠小于經典理論值?為什么量子熱容量遠小于經典理論值? 6.2 6.2 功函數和接觸電勢功函數和接觸電勢 1. 1. 什么是功函數?經典電子論和量子電子論給出什么是功函數?經典電子論和量子電子論給出的功函數有何區別?的功函數有何區別? 2. 2. 兩塊不同金屬接觸為何產生接觸電勢?接觸兩塊不同金屬接觸為何產生接觸電勢?接觸電勢的大小與功函數有何關系?電勢的大小與功函數有何關系? 4.124.12設有二維正方晶格,晶體勢為設有二維正方晶格,晶體勢為用近自由電子近似的微擾論,近似求出布里淵區頂角用近自由電子近似的微擾論,近似求出布里淵區頂角 處的能隙處的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 巴音郭楞蒙古自治州輪臺縣2025-2026學年三年級數學第一學期期末調研試題含解析
- 安徽省宿州市靈璧縣2025-2026學年數學三年級第一學期期末教學質量檢測試題含解析
- 患者安全護理管理
- 沖刺搶分卷02 備戰2025年高考考前仿真模擬卷沖刺搶分卷化學試題02 (遼寧、黑龍江、吉林、內蒙古專用) 含解析
- 節能環保設施安裝維修合同
- 數字媒體技術知識點練習題
- 工程經濟項目價值評估題目試題及答案
- 通信設備研發與技術支持服務合同
- 商業法案例閱讀題
- 農業養殖技術應用與指導協議
- MOOC 學術英語寫作-東南大學 中國大學慕課答案
- 《老北京四合院》
- 常用化學中英文名詞對照表
- 筋膜間室綜合征
- 基于UC3842的反激式開關電源的設計
- 生態防護林建設項目建議書范文
- 大學生對美團滿意調查問卷
- 原輔材料留樣觀察記錄
- 手語教學(課堂PPT)
- 《城市景觀生態》PPT課件.ppt
- 工程停止點檢查管理(共17頁)
評論
0/150
提交評論