




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、對角線取值范圍問題(同三角形第三邊中線取值范圍)平行四邊形一邊長為10,一條對角線長為6,則它的另一條對角線長a的取值范圍為()A.4<a<16B,14<a<26C,12<a<20D,8<a<32平行四邊形的判定:1:定義法:兩組對邊分別平行的四邊形是平行四邊形2:一組對邊平行且相等的四邊形是平行四邊形3:兩組對邊分別相等的四邊形是平行四邊形4:對角線相互平分的四邊形是平行四邊形14 .平行四邊形的判定(一)定義法:兩組對邊分別平行的四邊形是平行四邊形例題1:如圖,四邊形ABC比平行四邊形,連接AC.過點A作AHBC于點E;過點C作CF/AE交A
2、D于點F;求證:四邊形AECF為平行四邊形練習:1、已知:如圖,ABC是等邊三角形,DE分別是BA、CA的延長線上的點,且AD=AE連接ED并延長至ijF,使彳#EF=EC,連接AF、CF、BE.(1)求證:四邊形BCFD是平行四邊形;證明:(1)VABC為等邊三角形,且AE=AD,由題可知/AED=/ADE=ZEAD=60°EF/BC,又=EC=EF,.ECF為等邊三角形,即/EFC=/EDB=60°,CF/BD一四邊形BCFD為平行四邊形.2、如圖:平行四邊形ABCLfr,MN分別是ABCD的中點,AN與DM®交于點P,BN與CMf交于點Q試說明PQ與MNS相
3、平分。3、如圖,在四邊形ABCD中,AH、CGBE、FD分別是/A、/C、/B、/D的角平分線,且BE/FD,AH/CG證明四邊形ABCD為平行四邊形.15 .平行四邊形的判定(二):一組對邊平行且相等的四邊形是平行四邊形例題1:如圖,在ABCM,延長CD到E,使D&CD連接BE交AD于點F,交AC于點Go求證:AF=DF【答案】解:(1)證明:如圖1,連接BDAE, 四邊形ABCD平行四邊形, .AB/CDAB=CD> .DE=CDAB/DEAB=DE,四邊形ABD既平行四邊形。,AF=DF。練習:1、如圖,已知平行四邊形ABCD過A作AMLBC于M,交BD于E,過C作CNLA
4、D于N,交BD于F,連結AF、CE(1) 求證:四邊形AECF為平行四邊形;【答案】(1)證明二四邊形ABC比平行四邊形(已知),BC/AD(平行四邊形的對邊相互平行)。又AM,BC(已知),.AMLAD.CNLAD(已知),,AM/CN.AE/CE又由平行得/ADEMCBD又AD=BC(平行四邊形的對邊相等)。在4ADE和4CBF中,/DAEWBCF=90,AD=CB/ADEWFBC.AD且ACBICASA,,AE=CF(全等三角形的對應邊相等)。四邊形AECF為平行四邊形(對邊平行且相等的四邊形是平行四邊形)2、如圖:在口ABC葉,E,G,F,H分別是四條邊上的點,且AECF,BGDH試說
5、明:EF與GH相互平分.例題2:如圖,ABCffiADEtB是等邊三角形,點D在BC邊上,AB邊上有一點F,且BF=DC連接EF、EB.(1)求證:AB草AACD(2)求證:四邊形EFC北平行四邊形練習:1、如圖1,在4OAB中,/OAB=90,/AOB=30,OB=8.以OB為一邊,在OA陟卜作等邊三角形OBC,DOB的中點,連接AD并延長交OC于E.求點B的坐標.求證:四邊形ABCE1平行四邊形.如圖2,將圖1中的四邊形ABCOff疊,使點C與點A重合,折痕為FG,求OG勺長.【解析】(1)vZAOB=30,OB=8,AB=4,OA=43,B(小區4).(2);OB久等邊三角形,.OC=O
6、B=8.VD點為OB的中點,;OD=4.又;AD是RtOAB斗邊的中線, .AD=OB=OD, ./ODA=180-2X30°=120°,./EDO=60.又/EOD=60,.OEM等邊三角形,OE=4JE(0,4),CE=4,CE=ABRvCE/AB, 四邊形abceW四邊形.(3)ga=gc;.gA=gC.即oG+oAoc-ogIqe+K'Jp-og)2,.og=i.16.平行四邊形的判定(三):兩組對邊分別相等的四邊形是平行四邊形例題1:如圖,點A是直線l外一點,在l上取兩點RC,分另1J以AC為圓心,BGAB長為半徑畫弧,兩弧交于點D,分別連接ARARCD,
7、則四邊形ABCDH定是1】A.平行四邊形B.矩形C.菱形D.梯形練習:1、如圖,點AB、C是坐標平面內不在同一直線上的三點,畫出以A、B、C三點為頂點的平行四邊形.例題2:如圖所示,試證明:四邊形PONMH平行四邊形.練習:1、在YABCM,分別以AD,BC為邊向內作等邊ADEffi等邊ABCF連接BE,DF.求證:四邊形BED笈平行四邊形.2、四邊形的四條邊長分別是a、b、c、d,其中a、c為對邊,且滿足,則這個四邊形一定是()A.平行四邊形B.兩組對角分別相等的四邊形C.對角線互相垂直的四邊形D.對角線相等的四邊形3、等邊八ABC中,點D在BC上,點E在AB上,且CD=BE以AD為邊作等邊
8、ADF,如圖.求證:四邊形CDFE是平行四邊形.4、如圖所示,以ABC的三邊為邊在BC的同側分別作三個等邊三角形ABRBCEACF,猜想:四邊形ADEF是什么四邊形,試證明你的結論.證明:四邊形ADEF是平行四邊形.連接EDEF,ABD.ABCBACF分別是等邊三角形,AB=BDBC=BE/DBA土EBC=60°.丁./DBE=/ABC.ABCADBE.同理可證ABCFEC,AB=EF,AC=DEvAB=ADAC=AF,AD=EEDE=AF.四邊形ADEF是平行四邊形17 .平行四邊形的判定(四):對角線相互平分的四邊形是平行四邊形例題1:已知A(2,3)B(-2,5),A、B點關于
9、原點的對稱點分別為C、D,依次連接A、B、C、D點,則四邊形ABC此什么四邊形?例題2、如圖,在平行四邊形ABCM,連接對角線BD,過AC兩點分別作AEBD于E點,CFBD于F點,求證:四邊形AEC皿平行四邊形練習:1、如圖是某市一公園的路面示意圖,其中,ABC虛平行四邊形,BEAC,DFAC,E、F是垂足,GH分別是BGAD的中點,連接EGGF、FH,HE為公園中小路,問小明從B地經E地,H地到F地,與小強從D地經F地,G地到E地,誰的路程遠?2、如圖所示,在YABCD43,E、F是對角線AC上兩點,且AF=CE,求證:四邊形BEDF是平行四邊形.3、如圖,在YABCD43,點MN是對角線A
10、C上的點,且AM=CN,DE=BF,求證:四邊形MFNE平行四邊形18 .坐標平行四邊形知識點總結:若A、RC為已知點,則求一點D與他們構成平行四邊形,則有三個點D1、D2、D3,則有D1=A+B-CD2=A+C-BD3=B+C-A(按照中點坐標公式和對角線相互平分性質)例題1、已知點A(-1,0),B(2,-1),D(0,1).請在直角坐標系中找一點C與A、BCD四點構成平行四邊形,則點C的坐標為-練習:1、若以A(,0),B(2,0),C(0,1)三點為頂點要畫平行四邊形,則第四個頂點不可能在【】A.第一象限B.第二象限C.第三象限D.第四象限2、已知點D與點A(8,0),B(0,6),C
11、(a,-a)是一平行四邊形的四個頂點,則CD長的最小值為.例題2、如圖,在平面直角坐標系中,已知RtAOB的兩條直角邊0A、08分別在y軸和x軸上,并且OAOB的長分別是方程x27x120的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設點P、Q運動的時間為t秒.(1)求A、B兩點的坐標。(2)當t=2時,在坐標平面內,是否存在點M,使以A、P、QM為頂點的四邊形是平行四邊形*存在,請直接寫出M點的坐標;若不存在,請說明理由練習:1、如圖BCx軸于C點,BA例于人點,B(3,4),
12、四邊形ABC加直線EF折疊,點A落在BC邊上的G處,E、F分別在ADAB上,且AF=2.(1)求G點坐標;(2)求直線EF解析式;(3)點N在x軸上,直線EF上是否存在點M使以MN、F、G為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由19 .動點平行四邊形例題1:在四邊形ABCD中,AD/BC且AD>BC,BC=6cmP、Q分別從A、C同時出發,P以1cm/s的速度由A向D運動,Q以2cm/s的速度由C出發向B運動,幾秒后四邊形ABQP是平行四邊形?練習:1、如圖,在ABC中,AB=AC,射線AM/BC,點P從點A出發沿射線AM運動,同時點Q從點B出發沿射
13、線BC運動,設運動時間為t(s).(1)連接PQAQPC,當PQ經過AC的中點D時,求證:四邊形AQCP是平行四邊形;|一(2)若BC=6cm,點P速度為1cm/s,點Q的速度為4cm/s,填空:當t為s時,以A、Q、GP為頂點的四邊形是平行四邊形;(1)證明::D為AC中點,AD=CDvAM/BC,丁./PAC=/ACB,在ADP和CDQ中,/PAD=/DCQAD=CD/ADP=/CDQ.ADPzXCDQ(ASA),PD=DQ又=AD=CD一四邊形AQCP是平行四邊形;(2)當Q在線段BC上,AP=QC時,以A、QC、P為頂點的四邊形是平行四邊形,|由題意得:t=6-4t,解得:t=,當Q在
14、C的右邊時,AP=QC時,以A、。C、P為頂點的四邊形是平行四邊形,由題意得:t=4t-6,解得:t=2,故答案為:或2;2、如圖,/ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合),連接AD,彳BEXAD),垂足為E,連接CE,過點E作EFLCE,交BD于F.(1)求證:BF=FD;(2)點D在運動過程中能否使得四邊形ACFE為平行四邊形?如不能,請說明理由;如能,求出此時/A的度數.解:(1)在RtAEB中,.AC=BC-1二CE=AB2CB=CE丁./CEB=/CBEvZCEF=/CBF=90°,丁./BEF=/EBF,EF=BF.vZBEF+ZF
15、ED=90°,/EBD+ZEDB=90°,丁./FED=/EDF,vEF=FD.BF=FD.(2)能.理由如下:若四邊形ACFE為平行四邊形,貝UAC/EF,AC=EF,BC=BE.BA=BD/A=45°.當ZA=450時四邊形ACFE為平行四邊形.3、將一副三角尺如圖拼接:含30°角的三角尺(ABC的長直角邊與含450角的三角尺(ACI)的斜邊恰好重合.已知A五2<3,P是AC上的一個動點.(1)當點P運動到/ABC的平分線上時,連接DP求DP的長;(2)當點P在運動過程中出現PD=BC時,求此時/PDA勺度數;(3)當點P運動到什么位置時,以D
16、,P,B,Q為頂點的平行四邊形的頂點Q恰好在邊BC上?求出此時UDPBQ勺面積.34、直線y-x6與坐標軸分別父與點A、B兩點,點P、Q同時從O點出發,4同時到達A點,運動停止。點Q沿線段OA運動,速度為每秒1個單位長度,點P沿O-B-A運動。(1)直接寫出A、B兩點的坐標;(2)設點Q的運動時間為t秒,OPQ勺面積為S,求出S與t之間的函數關系式。(3)當S翌時,求出點P的坐標,并直接寫出以點QP、Q為頂點的平行四邊形5的第四個頂點M的坐標。20.性質和判定綜合例題1、如圖E、F是四邊形ABCM對角線AC上的兩點,AF=CEDF=BEDF/BE求證:(1)/AF陰/CEB",(2)
17、四邊形ABC虛平行四邊形.解:(1)因為DF/BE,所以/AFD=/CEB又因為AF=CEDF=BE,所以AF陰/CEB(2)由(1)AAFtDCEB知AD=BC/DAF=/BCE,所以AD/BC,所以四邊形ABCD平行四邊形.例題2:如圖,在ABC中,ZACB=90°,D是BC的中點,DHBGC由DBF為鄰邊作平行四邊形BDEF又APBE(點P、E在直線AB的同側),如果BD1AB,那4么APBC的面積與ABC面積之比為【】A.1B.3C.1D.-4554【答案】a【考點】平行四邊形的判定和性質。【分析】過點P作PH/BC交AB于H,連接CHPF,PE .APBE:四邊形APE配平
18、行四邊形。.PEAB, 四邊形BDEF平行四邊形,.EFBD .EF/ARaP,E,F共線。設BD=a1.八-BD-AB,二PE=AB=4aPF=PE-EF=3a4vPH/BGHB(=SPBCo.PF/AB,二四邊形BFPH平行四邊形。.BH=PF=3a,/SahbcSaabc=BHAB=3a4a=3:4,Sapbc:Saabc=3:4。故選D。練習:1、如圖,ABC是等邊三角形,P是三角形內任一點,PDAB,PEBC,PF/AC,若ABC周長為12,求PD+PE+P的化來源:學綱綱Z&X&XaK2、圖3是某城EC±BGBA/DE,BD/AE,EF=FC甲、乙兩人同時從B站乘車到F站,甲乘1市部分街道示意圖,圖中AF/BC,路車,路線是B-A一E一F,乙乘2路車,路線是B-AC-F.假設兩車速度相同,途中耽誤時間相同,那么誰先到達F點,?請說明理由.來源:Z§xx§E3、已知:如圖,四邊形ABC北平行四邊形,DEY(1)求證:乙AEMCFN21世紀教育網(2)求證:四邊形BMDN!平行四邊形.【答案】證明:(1)二.四邊形ABCD是平行四邊形,.AB/DC,AD/BG/E=/F,/DAB=BCD/EAM=FCNXvAE=CFaAAEIWACFN(ASA。(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 紡織品染整工藝流程設計考核試卷
- 繩索結構設計原理與案例分析考核試卷
- 增材制造裝備在光學元件加工的技術考核試卷
- 牛的飼養飼料浪費減少方法考核試卷
- 寵物友好度假活動策劃考核試卷
- 稀土金屬加工中的生產計劃編制與執行考核試卷
- 商丘職業技術學院《C語言程序設計基礎》2023-2024學年第二學期期末試卷
- 山東經貿職業學院《形勢與政策2》2023-2024學年第一學期期末試卷
- 山西電力職業技術學院《機能學實驗(二)》2023-2024學年第二學期期末試卷
- 內江職業技術學院《冶金電化學》2023-2024學年第二學期期末試卷
- 《通達信炒股軟件從入門到精通》讀書筆記模板
- 科研誠信問題課件
- 高頻電刀之負極板的正確使用方法
- 關于高中班級管理論文
- 21秋國家開放大學《公共部門人力資源管理》單元自測題參考答案
- 發動機集中控制系統
- 東北抗聯英雄人物智慧樹知到答案章節測試2023年牡丹江師范學院
- 2023年鄭州信息科技職業學院單招考試職業適應性測試模擬試題及答案解析
- 國開電大2022年《小學數學教學研究》形考任務1-4答
- 精神科護士分層次培訓計劃
- (貴陽專版)中考英語復習 第3部分 中考題型攻略篇 題型7 任務型閱讀(精講)
評論
0/150
提交評論