



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、考點十九統計與統計案例一、選擇題1對四組數據進行統計,獲得如下圖的散點圖,關于其相關系數的比擬,正確的選項是()ar2<r4<0<r3<r1 br4<r2<0<r1<r3cr4<r2<0<r3<r1 dr2<r4<0<r1<r3答案a解析易知題中圖(1)和圖(3)是正相關,圖(2)與圖(4)是負相關,且圖(1)與圖(2)中的樣本點集中分布在一條直線附近,那么r2<r4<0<r3<r1.2(2022·全國卷)演講比賽共有9位評委分別給出某選手的原始評分,評定該選手的成
2、績時,從9個原始評分中去掉1個最高分、1個最低分,得到7個有效評分.7個有效評分與9個原始評分相比,不變的數字特征是()a中位數 b平均數 c方差 d極差答案a解析中位數是將9個數據從小到大或從大到小排列后,處于中間位置的數據,因而去掉1個最高分和1個最低分,不變的是中位數,平均數、方差、極差均受影響應選a.3(2022·南陽市一中第九次目標考試)為考察a,b兩種藥物預防某疾病的效果,進行動物實驗,分別得到如下等高條形圖根據圖中信息,在以下各項中,說法最正確的一項為哪一項()a藥物b的預防效果優于藥物a的預防效果b藥物a的預防效果優于藥物b的預防效果c藥物a,b對該疾病均有顯著的預防
3、效果d藥物a,b對該疾病均沒有預防效果答案b解析由題圖可得服用藥物a的患病人數少于服用藥物b的患病人數,而服用藥物a的未患病人數多于服用藥物b的未患病人數,所以藥物a的預防效果優于藥物b的預防效果應選b.4(2022·沈陽市東北育才學校高三一模)甲、乙兩名同學6次考試的成績統計如圖,甲、乙兩名同學成績的平均數分別為甲、乙,標準差分別為甲,乙,那么()a.甲<乙,甲<乙 b.甲<乙,甲>乙c.甲>乙,甲<乙 d.甲>乙,甲>乙答案c解析甲、乙兩名同學6次考試的成績統計如圖,甲、乙兩名同學成績的平均數分別為甲,乙,標準差分別為甲,乙,由折線
4、圖得甲>乙,甲<乙應選c.5(2022·湖南張家界三模)變量x,y之間的線性回歸方程為y0.7x10.3,且變量x,y之間的一組相關數據如表所示,那么以下說法錯誤的選項是()x681012y6m32a變量x,y之間呈現負相關關系b可以預測,當x20時,y3.7cm4d由表格數據可知,該回歸直線必過點(9,4)答案c解析由題意得,由0.7<0,得變量x,y之間呈負相關,故a正確;當x20時,那么0.7×2010.33.7,故b正確;由數據表格可知×(681012)9,×(6m32),那么0.7×910.3,解得m5,故c錯誤;由
5、數據表易知,數據中心為(9,4),故d正確應選c.6通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯表:男女總計愛好402060不愛好203050總計6050110由k2算得,k27.8.附表:p(k2k0)0.0500.0100.001k03.8416.63510.828參照附表,得到的正確結論是()a有99%以上的把握認為“愛好該項運動與性別有關b有99%以上的把握認為“愛好該項運動與性別無關c在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關d在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關答案a解析由k27.8>6.635可知
6、,我們有99%以上的把握認為“愛好該項運動與性別有關7(2022·湖南師大附中月考七)以下說法錯誤的選項是()a在回歸模型中,預報變量y的值不能由解釋變量x唯一確定b假設變量x,y滿足關系y0.1x1,且變量y與z正相關,那么x與z也正相關c在殘差圖中,殘差點分布的帶狀區域的寬度越狹窄,其模型擬合的精度越高d以模型ycekx去擬合一組數據時,為了求出回歸方程,設zln y,將其變換后得到線性方程z0.3x4,那么ce4,k0.3答案b解析對于a,y除了受自變量x的影響之外還受其他因素的影響,故a正確;對于b,變量x,y滿足關系y0.1x1,那么變量x與y負相關,又變量y與z正相關,那
7、么x與z負相關,故b錯誤;對于c,由殘差圖的意義可知正確;對于d,ycekx,兩邊取對數,可得ln yln (cekx)ln cln ekxln ckx,令zln y,可得zln ckx,z0.3x4,ln c4,k0.3,ce4.即d正確,應選b.8(2022·福建泉州第二次質檢)某樣本的容量為50,平均數為70,方差為75.現發現在收集這些數據時,其中的兩個數據記錄有誤,一個錯將80記錄為60,另一個錯將70記錄為90.在對錯誤的數據進行更正后,重新求得樣本的平均數為,方差為s2,那么()a.70,s2<75 b.70,s2>75c.>70,s2<75 d
8、.<70,s2>75答案a解析70,設收集的48個準確數據分別記為x1,x2,x48,那么75(x170)2(x270)2(x4870)2(6070)2(9070)2(x170)2(x270)2(x4870)2500,s2(x170)2(x270)2(x4870)2(8070)2(7070)2(x170)2(x270)2(x4870)2100<75,應選a.二、填空題9某同學一個學期內各次數學測驗成績的莖葉圖如下圖,那么該組數據的中位數是_答案83解析根據莖葉圖可知,中位數是82與84的平均數,所以答案為83.10總體由編號為01,02,19,20的個體組成,利用下面的隨機數
9、表選取7個個體,選取方法是從隨機數表第1行的第3列和第4列數字開始由左到右依次選取兩個數,那么選出的第7個個體的編號為_7816657208026314070243699728019832049234493582008623486969387481答案04解析由隨機數表可看出所選的數字依次為16,08,02,14,07,02,01,04,去掉重復數字02,那么第7個個體的編號為04,故答案為04.11(2022·河南新鄉三模)某校有高一學生n名,其中男生數與女生數之比為65,為了解學生的視力情況,現要求按分層抽樣的方法抽取一個樣本容量為的樣本,假設樣本中男生比女生多12人,那么n_.
10、答案1320解析依題意可得×12,解得n1320.12(2022·河南安陽十一模)通常,總分值為100分的試卷,60分為及格線,假設某次總分值為100分的測試卷,100人參加測試,將這100人的卷面分數按照24,36),36,48),84,96分組后繪制的頻率分布直方圖如下圖由于及格人數較少,某老師準備將每位學生的卷面分采用“開方乘以10取整的方式進行換算以提高及格率(實數a的取整等于不超過a的最大整數),如:某位學生卷面49分,那么換算成70分作為他的最終考試成績,那么按照這種方式,這次測試的及格率將變為_答案0.82解析先考慮不進行換算前36分以上(含36分)的學生的頻
11、率,該頻率為10.015×120.82,換算后,原來36分以上(含36分)的學生都算及格,故這次測試的及格率將變為0.82.三、解答題13(2022·內蒙古一模)在某外國語學校舉行的himcm(高中生數學建模大賽)中,參與大賽的女生與男生人數之比為13,且成績分布在40,100,分數在80以上(含80)的同學獲獎按女生、男生用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如下圖(1)求a的值,并計算所抽取樣本的平均值(同一組中的數據用該組區間的中點值作代表);(2)填寫下面的2×2列聯表,并判斷在犯錯誤的概率不超過0.05的前提下能否認為“獲獎
12、與女生、男生有關女生男生總計獲獎5不獲獎總計200附表及公式:p(k2k0)0.100.050.0250.0100.0050.001k02.7063.8415.0246.6357.87910.828其中k2,nabcd.解(1)a×1(0.010.0150.030.0150.005)×100.025,45×0.155×0.1565×0.2575×0.385×0.1595×0.0569.(2)由頻率分布直方圖知樣本中獲獎的人數為40,不獲獎的人數為160,2×2列聯表如下:女生男生總計獲獎53540不獲獎4
13、5115160總計50150200因為k24.167>3.841,所以在犯錯誤的概率不超過0.05的前提下能認為“獲獎與女生、男生有關14(2022·聊城市高三一模)某小學為了了解四年級學生的家庭作業用時情況,從本校四年級隨機抽取了一批學生進行調查,并繪制了學生作業用時的頻率分布直方圖,如下圖(1)估算這批學生的作業平均用時情況;(2)作業用時不能完全反映學生學業負擔情況,這與學生自身的學習習慣有很大關系,如果用時四十分鐘之內評價為優異,一個小時以上為一般,其他評價為良好現從優異和良好的學生里面用分層抽樣的方法抽取300人,其中女生有90人(優異20人)請完成列聯表,并根據列聯
14、表分析能否在犯錯誤的概率不超過0.05的前提下認為學習習慣與性別有關系?男生女生合計良好優異合計附:k2,其中nabcd.p(k2k0)0.1000.0500.0250.0100.001k02.7063.8415.0246.63510.828解(1)10×(35×0.0145×0.0255×0.0365×0.02575×0.0185×0.005)57.所以批學生作業用時的平均數為57.(2)優異學生數與良好學生數之比為0.01(0.020.03)15,按照分層抽樣得300人中優異50人,良好250人;女生90人,男生210人
15、;女生優異20,良好70人,男生優異30人,良好180人,列聯表如下:男生女生合計良好18070250優異302050合計21090300k22.857<3.841,故不能在犯錯誤的概率不超過0.05的前提下認為學習習慣與性別有關系一、選擇題1在一次數學測試中,數學老師對班上7名同學在20題(12分),21題(12分)的得分情況進行統計,得到的得分率如下圖,其中20題的得分率為圖中虛線局部、21題的得分率為圖中實線局部,記第20題、21題的平均得分分別為1,2,第20題、21題得分的標準差分別為s1,s2,那么()a.1>2,s1>s2 b.1<2,s1>s2c.
16、1>2,s1<s2 d.1<2,s1<s2答案c解析由于20題、21題的分值相同,且20題的得分率高于21題的得分率,那么20題的得分高于21題的得分;又由圖可知,21題的得分率離散程度相對較大,那么21題得分的標準差大于20題得分的標準差,故1>2,s1<s2,應選c.2采用系統抽樣方法從960人中抽取32人做問卷調查,為此將他們隨機編號為1,2,960,分組后在第一組采用簡單隨機抽樣的方法抽到的號碼為9.抽到的32人中,編號落入1,450的人做問卷a,編號落入451,750的人做問卷b,其余的人做問卷c,那么抽到的人中,做問卷b的人數為()a8 b10
17、c12 d14答案b解析由題意得系統抽樣的抽樣間隔為30,又因為第一組內抽取的號碼為9,那么由451930k750(kn*)得14.7k24.7,所以做問卷b的人數為10.3一個頻率分布表(樣本容量為30)不小心被損壞了一局部,只記得樣本中數據在20,60)上的頻率為0.8,那么估計樣本在40,50),50,60)內的數據個數共為()a19 b17 c16 d15答案d解析由題意得樣本數據在20,60)內的頻數為30×0.824,那么樣本在40,50)和50,60)內的數據個數之和為244515,應選d.4為了解學生在課外活動方面的支出情況,抽取了n個同學進行調查,結果顯示這些學生的
18、支出金額(單位:元)都在10,50,其中支出金額在30,50的學生有117人,頻率分布直方圖如下圖,那么n()a180 b160 c150 d200答案a解析30,50對應的概率為1(0.010.025)×100.65,所以n180.5x與y之間的幾組數據如下表:x123456y021334假設根據上表數據所得線性回歸方程為x,假設某同學根據上表中的前兩組數據(1,0)和(2,2),求得的直線方程為ybxa,那么以下結論正確的選項是()a.>b,>a b.>b,<ac.<b,>a d.<b,<a答案c解析描出散點圖,易觀察出<b,
19、>a,應選c.6(2022·四川樂山第三次調研)某調查機構對全國互聯網行業進行調查統計,得到整個互聯網行業從業者年齡分布餅狀圖、90后從事互聯網行業崗位分布條形圖,那么以下結論中不一定正確的選項是()注:90后指1990年及以后出生,80后指19801989年之間出生,80前指1979年及以前出生a互聯網行業從業人員中90后占一半以上b互聯網行業中從事技術崗位的人數超過總人數的20%c互聯網行業中從事運營崗位的人數90后比80前多d互聯網行業中從事技術崗位的人數90后比80后多答案d解析對于選項a,互聯網行業從業人員中90后占56%,占一半以上,所以正確;對于選項b,互聯網行業
20、中90后從事技術崗位的人數占總人數的39.6%×56%22.176%,超過總人數的20%,所以正確;對于選項c,互聯網行業中從事運營崗位的人數90后占總人數的56%×17%9.52%,比80前多,所以正確;對于選項d,互聯網行業中從事運營崗位的人數90后占總人數的56%×17%9.52%,80后占總人數的41%,所以互聯網行業中從事運營崗位的人數90后不一定比80后多,所以不一定正確,應選d.7針對“中學生追星問題,某校團委對“學生性別和中學生追星是否有關作了一次調查,其中女生人數是男生人數的,男生追星的人數占男生人數的,女生追星的人數占女生人數的.假設有95%的
21、把握認為是否追星和性別有關,那么男生至少有()a11人 b12人 c18人 d24人附表及公式:k2,nabcd.p(k2k0)0.0500.0250.0100.005k03.8415.0246.6357.879答案b解析設男生人數為x,依題意可得列聯表如下:喜歡追星不喜歡追星總計男生x女生總計x假設在犯錯誤的概率不超過95%的前提下認為是否喜歡追星和性別有關,那么k2>3.841,由k2>3.841,解得x>10.24,為整數,假設在犯錯誤的概率不超過95%的前提下認為是否喜歡追星和性別有關,那么男生至少有12人,應選b.8(2022·江西南昌一模)具有線性相關的
22、五個樣本點a1(0,0),a2(2,2),a3(3,2),a4(4,2),a5(6,4),用最小二乘法得到回歸直線方程l1:ybxa,過點a1,a2的直線方程l2:ymxn,那么以下四個命題中:m>b,a>n;直線l1過點a3; (yibxia)2 (yimxin)2;|yibxia|yimxin|.正確命題有()a1個 b2個 c3個 d4個答案b解析由所給的數據計算可得3,2,回歸方程為y0.6x0.2,過點a1,a2的直線方程為yx,逐一考查所給的結論:m>b,a>n,該說法正確;直線l1過點a3即回歸方程過樣本中心點,該說法正確; (yibxia)20.8, (
23、yimxin)29,說法錯誤;|yibxia|1.6,|yimxin|5,說法錯誤,綜上可得正確命題的個數有2個,應選b.二、填空題9空氣質量指數(air quality index,簡稱aqi)是定量描述空氣質量狀況的指數,空氣質量按照aqi大小分為六級,050為優;51100為良;101150為輕度污染;151200為中度污染;201300為重度污染;大于300為嚴重污染一環保人士從當地某年的aqi記錄數據中,隨機抽取10個,用莖葉圖記錄如圖根據該統計數據,估計此地該年aqi大于100的天數為_(該年為365天)答案146解析該樣本中aqi大于100的頻數為4,頻率為,以此估計此地全年aq
24、i大于100的頻率為,故此地該年aqi大于100的天數約為365×146.10某數學老師身高176 cm,他爺爺、父親和兒子的身高分別是173 cm、170 cm和182 cm.因兒子的身高與父親的身高有關,該老師用線性回歸分析的方法預測他孫子的身高為_cm.答案185解析設父親身高為x cm,兒子身高為y cm,那么x173170176y170176182173,176,1, 1761×1733,所以x3,當x182時,185.11甲、乙兩人要競爭一次大型體育競技比賽射擊工程的參賽資格,如圖是在測試中甲、乙各射靶10次的條形圖,那么參加比賽的最正確人選為_答案乙解析甲的平
25、均數14×0.25×0.17×0.38×0.19×0.210×0.17.0,乙的平均數25×0.16×0.27×0.48×0.29×0.17.0,所以12;甲的方差s×(74)2×2(75)2×1(77)2×3(78)2×1(79)2×2(710)2×14,乙的方差s×(75)2×1(76)2×2(77)2×4(78)2×2(79)2×11.2,所以s>
26、;s,即參加比賽的最正確人選為乙12某學校開展一次“五·四知識競賽活動,共有三個問題,其中第1、2題總分值都是15分,第3題總分值是20分每個問題或者得總分值,或者得0分活動結果顯示,每個參賽選手至少答對一道題,有6名選手只答對其中一道題,有12名選手只答對其中兩道題答對第1題的人數與答對第2題的人數之和為26,答對第1題的人數與答對第3題的人數之和為24,答對第2題的人數與答對第3題的人數之和為22.那么參賽選手中三道題全答對的人數是_;所有參賽選手得分的平均數是_答案229.5解析設x1,x2,x3分別表示答對第1題、第2題、第3題的人數,那么有解得x114,x212,x310,
27、又只答對一道題的人數為6,只答對兩道題的人數為12,設答對三道題的人數為x,那么全班人數為612x,6×112×23x36,解得x2,三道題全答對的人數是2,所有參賽選手得分的平均數是×(14×1512×1510×20)29.5.三、解答題13(2022·長沙一模)某互聯網公司為了確定下一季度的前期廣告投入方案,收集了近6個月廣告投入量x(單位:萬元)和收益y(單位:萬元)的數據如下表:月份123456廣告投入量/萬元24681012收益/萬元14.2120.3131.831.1837.8344.67他們用兩種模型ybxa,yaebx分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如下圖的殘差圖及一些統計量的值:xiyix7301464.24364(1)根據殘差圖,比擬模型,的擬合效果,應選擇哪個模型?并說明理由;(2)殘差絕對值大于2的數據被認為是異常數據,需要剔除:()剔除異常數據后,求出(1)中所選模型的回歸方程;()廣
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三年級信息技術上冊 第一單元 第5課《畫美麗的早晨》教學設計2 冀教版
- 加班審批表(完整)
- 會議(培訓)記錄(完整版)
- 九年級美術(浙美版)上冊教學設計
- 2024南方出版傳媒股份有限公司校園招聘筆試參考題庫附帶答案詳解
- 一年級道德與法治下冊 第二單元 這樣做真好 第5課《懂禮貌 人人夸》教學設計 粵教版
- 教師個人師德師風學習培訓心得合集
- 七年級生物下冊 第四單元 第11章 第2節 尿的形成與排出教學設計 (新版)北師大版
- 全國閩教版初中信息技術八年級上冊第一單元活動一《圖像的獲取》教學設計
- 九年級語文上冊 第六單元 22范進中舉教學設計 新人教版
- 上海市黃浦區2025屆高三高考二模地理試卷(含答案)
- 2025年淄博市光明電力服務有限責任公司招聘筆試參考題庫含答案解析
- 游樂場區塊鏈數據共享-全面剖析
- 2024年陜西省縣以下醫療衛生機構定向招聘考試真題
- 槽輪機構槽輪機構包頭課件
- 鄰里間的溫暖
- DB34T 5102-2025巢湖流域農田面源污染防控技術指南
- 普法課件創新版:2025年統計法深度解析
- T-SEEPLA 08-2024 水生態監測環境 DNA熒光定量PCR法
- 2025年陜西農業發展集團有限公司(陜西省土地工程建設集團)招聘(200人)筆試參考題庫附帶答案詳解
- 團購合作業務協議書范本2025
評論
0/150
提交評論