數學九年級下浙教版5.1.1定義與命題同步教案_第1頁
數學九年級下浙教版5.1.1定義與命題同步教案_第2頁
數學九年級下浙教版5.1.1定義與命題同步教案_第3頁
數學九年級下浙教版5.1.1定義與命題同步教案_第4頁
數學九年級下浙教版5.1.1定義與命題同步教案_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、4.1定義與命題(1)【教學目標】1了解定義的含義 2了解命題的含義3了解命題的結構,會把一個命題寫成“如果那么”的形式【教學重點、難點】Ø重點:命題的概念Ø難點:象范例中第(3)題,這類命題的條件和結論不十分明顯,改寫成“如果那么” 形式學生會感到困難,是本節(jié)課的難點【教學過程】一、 一、創(chuàng)設情景,導入新課 (1)閱讀新華社酒泉2005年10月11日這篇報導: 神舟六號載人飛船將于10月12日上午發(fā)射,神舟六號飛船搭乘兩名航天員,執(zhí)行多天飛行任務按計劃,飛船將從中國酒泉衛(wèi)星發(fā)射中心發(fā)射升空,運行在軌道傾角42.4°、近地點高度為200千米、遠地點高度為347千米

2、的橢圓軌道上,實施變軌后,進入343千米的圓軌道要讀懂這段報導,你認為要知道哪些名稱和術語的含義?(2)什么叫做平行線?(在同一平面內不相交的兩條直線叫做平行線)什么叫做物質的密度?(單位體積內所含某一物質的質量叫做密度)二、合作交流,探求新知1定義概念的教學從以上兩個問題中引入定義這個概念:一般地,能清楚地規(guī)定某一名稱或術語的意義的句子叫做該名稱或術語的定義象問題(1)中的軌道傾角、近地點高度、遠地點高度、變軌的含義必須有明確的規(guī)定,即需要給出定義完成做一做請說出下列名詞的定義: (1)無理數;(2)直角三角形;(3)一次函數;(4)頻率;(5)壓強2命題概念的教學教師提出問題: 判斷下列語

3、句在表述形式上,哪些對事情作了判斷?哪些沒有對事情作出判斷?(1)對頂角相等; (2)畫一個角等于已知角;(3)兩直線平行,同位角相等; (4),兩條直線平行嗎? (5)鳥是動物; (6)若,求的值; (7)若,則答案:句子(1)(3)(5)(7) 對事情作了判斷,句子(2)(4)(6)沒有對事情作出判斷其中 (1)(3)(5)判斷是正確的,(7)判斷是錯誤的在此基礎上歸納出命題的概念:一般地,對某一件事情作出正確或不正確的判斷的句子叫做命題象句子(1)(3)(5)(7)都是命題;句子(2)(4)(6)都不是命題說明:講解定義、命題的含義時,要突出語句的作用句子根據其作用分為判斷、陳述、疑問、

4、祈使四個類別定義屬于陳述句,是對一個名稱或術語的意義的規(guī)定而命題屬于判斷句或陳述句,且都對一件事情作出判斷與判斷的正確與否沒有關系3命題的結構的教學告訴學生現階段我們在數學上學習的命題可看做由題設(或條件)和結論兩部分組成題設是已知事項,結論是由已知事項推出的事項這樣的命題可以寫成“如果那么”的形式,其中以“如果”開始的部分是條件,“那么”后面的部分是結論如“兩直線平行,同位角相等”可以改寫成“如果兩條直線平行,那么同位角相等”三、師生互動 運用新知下面通過書本中的范例介紹如何找出一個命題的條件和結論,并改寫成“如果那么”的形式例1 指出下列命題的條件和結論,并改寫成“如果那么”的形式:(1)

5、三條邊對應相等的兩個三角形全等;(2)在同一個三角形中,等角對等邊;(3)對頂角相等;(4)同角的余角相等;(5)三角形的內角和等于180°; (6)角平分線上的點到角的兩邊距離相等 分析:找出命題的條件和結論是本節(jié)課的難點,因為命題在敘述時要求通順和簡練,把命題中的有些詞或句子省略了,在改寫是注意把時要把省略的詞或句子添加上去(1)“三條邊對應相等”是對兩個三角形來說的,因此寫條件時最好把“兩個三角形”這句話添加上去,即命題的條件是“兩個三角形的三條邊對應相等”,結論是“這兩個三角形全等”可以改寫成“如果兩個三角形有三條邊對應相等,那么這兩個三角形全等” (2)學生可能會說條件是“

6、在同一個三角形中”,結論是“等角對等邊”教學時可作這樣引導:“等角對等邊含義”是指有兩個角相等所對的兩條邊相等,然后提問學生,一個三角形滿足什么條件時,有兩條邊相等?這個命題的條件是什么?結論是什么?值得注意的是,命題中包含了一個前提條件:“在一個三角形中”,在改寫時不能遺漏(3)可作如下啟發(fā):對頂角指兩個角的關系,相等指兩個角相等把“兩個角”添補上去,寫成“是對頂角的兩個角相等”,這樣學生不難得出這個命題的條件是“兩個角是對頂角”,結論是“兩個角相等”這個命題可以改寫成“如果兩個角是對頂角,那么這兩個角相等”(4)條件是“兩個角是同一個角的余角”,結論是“這兩個角相等”這個命題可以改寫成“如

7、果兩個角是同一個角的余角,那么這兩個角相等”(5)條件是“三個角是一個三角形的三個內角”,結論是“這三個角的和等于180°”這個命題可以改寫如果“三個角是一個三角形的三個內角,那么這三個角的和等于180°”; (6) 如果“一個點在一個角的平分線上,那么這個點到這個角的兩邊距離相等”例2 下列語句中,哪些是命題,哪些不是命題?(1)若a<b,則;(2)三角形的三條高交于一點;(3)在ABC中,若AB>AC,則C>B嗎?(4)兩點之間線段最短;(5)解方程;(6)123答案:(1)(2)(4)(6)是命題,(3)(5)不是命題例3 (1) 請給下列圖形命名,

8、并給出名稱的定義: 答案:略(2)觀察下列這些數,找出它們的共同特征,給以名稱,并作出定義: 52,2,0,2,8,14,20,答案:能被2整除的整數是偶數四、應用新知 體驗成功課內練習:教材中安排了4個課內練習,第1題是為定義這個概念配置的,第2題是為命題這個概念配置的,第3、4題是為命題的結構配置的第4題可以通過同伴或同桌的合作交流完成五、總結回顧,反思內化學生自由發(fā)言,這節(jié)課學了什么?教師做補充三個內容:六、布置作業(yè) 鞏固新知課本P72作業(yè)題 4.1 定義與命題(2)【教學目標】Ø知識目標:理解真命題、假命題、公理和定義的概念Ø能力目標:會判斷一個命題的真假,會區(qū)分定

9、理、公理和命題。Ø情感目標:通過對真假命題的判斷,培養(yǎng)學生樹立科學嚴謹的學習方法。【教學重點、難點】Ø重點:判斷一個命題的真假是本節(jié)的重點。Ø難點:公理、命題和定義的區(qū)別。【教學過程】(一):合作學習:復習命題的概念,思考下列命題的條件是什么?結論是什么? (1) 邊長為a(a0)的等邊三角形的面積為3/4(2) 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(3) 對于任何實數,提問:上述命題中,哪些正確?哪些不正確?:得出真命題、假命題的概念:正確的命題稱為真命題,不正確的命題稱為假命題。:把學生分成兩組,一組負責說命題,然后指定第二組中某一個人

10、來回答是真命題還是假命題(二):舉例:判斷下列命題是真命題還是假命題(1) x=1是方程x2-2x-3=0 的解。(2) x=2是方程 (x2 4)/(x2 -3x+2)的解。(3) 如圖,若1=2,則=。(4) 一個圖形經過旋轉變化,像和原圖形全等。(三)講述公理和定義:公理:人類經過長期實踐后公認為正確的命題,作為判斷其他命題的依據。這樣公認為正確的命題叫做公理。例如:“兩點之間線段最短”,“一條直線截兩條平行所得的同位角相等”,然后提問學生:你所學過的還有那些公理:定理:用推理的方法判斷為正確的命題叫做定理。定理也可以作為判斷其他命題真假的依據。:舉例請用學過的公理或定理說明下面這個命題

11、的正確性:“等腰三角形底邊上的高線、頂角的角平分線互相重合“(四):課內練習:見書本作業(yè)題(五):作業(yè):見作業(yè)本4.2證明(1)【教學目標】1了解證明的含義。2體驗、理解證明的必要性。3了解證明的表達格式,會按規(guī)定格式證明簡單命題。【教學重點、難點】Ø重點:本節(jié)教學的重點是證明的含義和表述格式。Ø難點:本節(jié)教學的難點是按規(guī)定格式表述證明的過程。【教學過程】一、 新課引入教師借助多媒體設備向學生演示課內節(jié)前圖:比較線段AB和線段CD的長度。通過簡單的觀察,并嘗試用數學的方法加以驗證,體會驗證的必要性和重要性二、 新課教學1、 合作學習參考教科書P74: 一組直線a、b、c、d

12、、是否不平行(互相相交),請通過觀察、先猜想結論,并動手驗證2、 證明的引入(1)命題“等腰直角三角形的斜邊是直角邊的 倍”是真命題嗎?請說明理由分析:根據需要畫出圖形,用幾何語言描述題中的已知條件和要說明的結論。 教師對具體的說理過程予以詳細的板書。小結歸納得出證明的含義,讓學生體會證明的初步格式。(2)通過例2的教學理解證明的含義,體會證明的格式和要求 例2、 證明命題“如果一個角的兩邊分別平行于另一個角的兩邊,且方向相同,那么這兩個角相等”是真命題。 分析:根據需要畫出圖形,用幾何語言描述題中的已知條件、以及要證明的結論(求證)。 證明過程的具體表述 (略) 小結:證明幾何命題的表述格式

13、 (1)按題意畫出圖形; (2)分清命題的條件和結論,結合圖形,在“已知”中寫出條件,在“求證”中寫出結論; (3) 在“證明”中寫出推理過程。(3)練習:P76課內練習2三、 例題教學例2、 已知:如圖,AC與BD相交于點O,AO=CO,BO=DO。求證: ABCD (證明略)四、 練習鞏固P76 課內練習3五、 小結(1) 證明的含義(2) 真命題證明的步驟和格式(3) 思考、探索:假命題的判斷如何說理、證明?六、作業(yè)布置4.2證明(2)【教學目標】進一步體會證明的含義;探索并理解三角形內角和定理的幾何證明;進一步熟練證明的方法和表述;讓學生體驗從實驗幾何向推理幾何的過渡【教學重點、難點】

14、Ø重點:探索三角形內角和定理的證明,進一步掌握證明的方法和表述Ø難點:例是由較復雜的題設條件得出若干結論,用到多個定理,是本節(jié)的難點【教學過程】一、 復習證明的一般格式和表述,導入新課通過一個簡單的命題的求證過程,讓學生自己回顧證明一個命題的一般格式,并用自己的語言進行表述(1)求證:線段垂直平分線上的點到線段兩個端點的距離相等設問:如何寫出已知、求證,并畫出圖形如何進行證明(可由學生口述) (2)根據上述題目結合學生的回答引導學生歸納出證明一個命題的一般格式: 按題意畫出圖形; 分清命題的條件和結論,結合圖形,在“已知”中寫出條件,在“求證”中寫出結論; 在“證明”中寫出

15、推理過程二、 合作交流,探究新知A(一)通過一個簡單的例子向學生簡介把一個由實驗得到的幾何命題經過推理的方法加以論證,讓學生體驗實驗幾何向推理幾何的簡單過渡。 命題:求證:三角形任何兩邊之和大于第三邊(1)讓學生回顧七年級對此命題的說明過程(2)教師通過“兩點之間線段最短”來說明上述命題,并板書論證過程BC(二)探究新知問題:三角形內角和定理是什么?出示命題:求證:三角形三內角和等于180°分析:(1)這個命題的條件和結論是什么?并根據條件和結論畫出圖形,寫出已知,求證(2)請同學們回顧,在三角形部分,對這個命題是用哪種實驗方法加以說明的(可請成績較好的同學回答)(3)請同學們思考:

16、如何通過添加輔助線的方法把三個角拼在一起,這些線中哪些線容易產生相等的角?(同學之間相互合作,討論學習,時間可稍長) 根據學生的回答,添輔助線并引導學生梳理推理的過程(此處可引導學生在不同的頂點處添加輔助線) (4)師生共同完成推理過程啟發(fā)學生再思考,除了選三角形頂點作平行線之外,還有沒有其他方法,比如選三角形邊上一點(此處也可讓學生相互討論并嘗試),師生共同探究出證明過程:可在BC邊上任意取一點P,作PDAB,交AC于點D;作PEAC,交AB于點E證明:PDAB(已知) DPC=B CDP=A (兩直線平行,同位角相等)又 PEACACBEDP EPB=C (兩直線平行,同位角相等) EPB

17、+EPD+DPC=C+A+B=180° (等量代換)ACB設問:三角形內角和外角之間有什么關系?D1E(學生討論,自己試著給出證明過程)三、 運用新知,體驗成功32如圖,比較1與2+3的大小,并證明你的判斷A(可讓學生自行完成,并口述過程,老師作點評)四、 拓展提高,綜合運用CB例 已知:如圖,AD是BAC的角平分線,BCAD于點O,ACDC于點CO求證:(1)ABC是等腰三角形;(2)D=B (一)啟發(fā)誘導,形成思路 (1)要證明ABC是等腰三角形,只需證明什么?D(AB=AC或B=ACB) (2)證明兩邊相等或兩角相等常用的方法是什么?(三角形全等) 圖中能否找到以AB,AC為對

18、應邊的全等三角形?ABO與ACO全等嗎?應該滿足什么條件? (3)要證明D=B,你能找到合適的全等三角形嗎? 根據已知ACDC,能得到D與三角形中哪個角互余? 根據已知BCDA,能得到B與三角形中哪個角互余? (二)指導學生完成證明過程; (三)指明此題是由結論出發(fā)尋求解題思路,這是常用的一種數學方法分析法五、疏理全過程,形成小結 (1)本節(jié)課你的最大收獲是什么? (可根據學生的回答大概歸納為:三角形內角和定理的證明方法作平行線法; 常用的幾何證明方法:由結論出發(fā)尋求使結論成立的條件,進而形成解題思路分析法)六、課外作業(yè):見作業(yè)本4.2證明(3)【教學目標】1、繼續(xù)學習證明的方法和表述2、通過

19、探求,讓學生歸納和掌握證明的兩種思考方法。【教學重點、難點】Ø重點:本節(jié)教學重點是如何分析證明的途徑Ø難點:難點是例6的證明,要用逆向思維的思考方法【教學過程】教師活動教學內容學生活動一、引例顯示引例在RtABC中,ACB=Rt,CDAB于D。和老師一起讀題,并要求能根據題意準確畫圖。二、回顧圖形中,有幾個銳角4個回答問題提問:通過觀察,圖形中這4個銳角大小有什么關系?兩兩分別相等學生思考,然后個別提問提出問題,提問學生時幫助總結證明方法。問題:求證:ACD=A證明:ACB=RtACD+BCD=90°CDABA+ACD=90°BCD=A(其它證法亦可)同

20、學們思考,然后讓一學生歸納方法。板書:課題§4.2證明(3)三、新課講解例51、指導學生,理解題意已知:如圖,AD是ABC的高,E是AD上一點,若AD=BD,DE=DC,求證:1=C審題,認真思考并且積極回答老師的提問2、思考:證明兩個角相等的方法有哪些?證明兩個角的方法較多,如兩條直線平行,同位角相等或內錯角相等,在本題總結的過程中幫助學生引導1和C在兩個三角形有什么特點。學生討論,然后提問總結。三、新課講解例53、教師幫助總結通過證明1與C所在的三角形全等通過提問學生總結方法4、問:如何證明?在全等的證明過程中,已知兩條件:AD=BD,DE=DC通過AD是ABC的高,可證出ADC

21、=BDE=Rt學生找已知條件和需證條件5、給出解題步驟證明:AD是ABC的高BDE=ADC=Rt又BD=AD(已知)DE=DC(已知)BDEADC(SAS)1=C(全等三角形的對應角相等)學生口述證題過程四、課堂練習一學生完成練習一后,出示參考證明核對(略)已知:如圖,在ABC中,D,E分別是AB,AC上的點,1=2,求證:B=ADE一學生在黑板上演示,其他學生在課本上完成練習。五、新課講解例6顯示例6(屏幕顯示)問:證明兩直線平行的方法有哪些?已知:AD是三角形紙片ABC的高,將紙片沿直線EF折疊,使點A與點D重合,求證:EFBC審題后思考:證明兩直線平行主要有哪些方法。2、通過學生的回答,

22、總結兩直線平行的方法平行的證法較多,有時無從著手,但聯系本題,需引導學生從結論出發(fā)進行思考。分組討論,前面組回答,后面組補充總結3、問,若在多條交流的河流下游發(fā)現河水被污染,該怎么找到污染源?總結出一條可行的方法逆流而上尋找污染源。發(fā)揮學生的發(fā)散思維,讓學生充分思考,盡情發(fā)揮。4、聯想本題,發(fā)生類比,從結論出發(fā)總結證明思路。 聯系本題,讓學生總結出逆流而上尋找證題思路。5、出示證明過程證明:因為將紙片沿直線EF折疊后,點A與點D重合,所以EF是線段AD的對稱軸。EFAD(對稱軸垂直平分連結兩個對稱點之間的線段)AD是ABC的高(已知)BCAD(三角形的高的定義)EFAD(垂直于同一條直線的兩直

23、線平行)通過總結,完成證題6、提出問題,讓學生課外思考完成后上交。問:審題從結論出發(fā),還有其它的解法讓學生解一題多種,學生可以互相討論。六、課堂練習2出示(屏幕顯示)已知:如圖,ADBC,B=D,求證,ADCCBA請寫出分析和證明過程 學生仔細審題要求學生用逆向思維的思考方式寫出分析過程學生獨立完成,互相討論,總結方法。七、課堂小結問:這節(jié)我們學到了什么?1、會正確表述證明的過程2、會判斷如何證明角、邊相等,兩直線平行3、學會用證明的兩種思考方法,特別要體驗逆向思維的必要性學生自由回答八、作業(yè)布置1、完成課本“作業(yè)題”2、預習下一節(jié)記錄4.3反例與證明【教學目標】1、理解反例的意義和作用。2、

24、掌握在簡單情況下利用反例證明一個命題是錯誤的【教學重點、難點】Ø重點:用反例證明一個命題是錯誤的Ø難點:如何構造一個反例去證明一個命題是錯誤的【教學過程】一、 情景引入判斷下列命題的真假(1) 素數是奇數(2) 黃皮膚、黑頭發(fā)的人是中國人(3) 在不同項點上有兩個外角是鈍角的三角形是銳角三角形我們對真命題的證明,掌握了一定的方法和技能,那么如何來說明一個命題是假命題呢?今天我們將一起來探討如何說明一個命題是假命題。從而引出課題反例與證明二、 新課新授1、討論(1)學生討論1:如何去判斷一個命題是假命題的方法?學生分小組討論,教師巡回指導,師生總結:判斷一個命題是假命題只要舉出一個反例即可。(2) 學生討論2:怎么樣反例才能判斷一個命題是假命題?學生分小組討論,教師巡回指導,師生總結:具備命題條件但不具備命題結論的例子 如:可以舉2是素數,但不是奇數,從而證明“素數是奇數”是假命題.(3

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論