




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、基于PWM技術的直流電機控制系統 由于直流電機具有良好的起動、制動和調速性能,已廣泛應用于工業、航天領域等各個方面。隨著電力電子技術的發展,脈寬調制(PWM)調速技術已成為直流電機常用的調速方法,具有調速精度高、響應速度快、調速范圍寬和功耗低等特點。而以H橋電路作為驅動器的功率驅動電路,可方便地實現直流電機的四象限運行,包括正轉、正轉制動、反轉、反轉制動,已廣泛應用于現代直流電機伺服系統中。 .直流電機PWM調速控制原理眾所周知,直流電動機轉速公式為【1】:n=(U-IR)/K 其中U為電樞端電壓,I為電樞電流,R
2、為電樞電路總電阻,為每極磁通量,K為電動機結構參數。 直流電機轉速控制可分為勵磁控制法與電樞電壓控制法。勵磁控制法用得很少,大多數應用場合都使用電樞電壓控制法。隨著電力電子技術的進步,改變電樞電壓可通過多種途徑實現,其中脈沖寬度調制 (PWM)便是常用的改變電樞電壓的一種調速方法。其方法是通過改變電機電樞電壓接通時間與通電周期的比值(即占空比)來調整直流電機的電樞電壓U,從而控制電機速度。 PWM的核心部件是電壓-脈寬變換器,其作用是根據控制指令信號對脈沖寬度進行調制,以便用
3、寬度隨指令變化的脈沖信號去控制大功率晶體管的導通時間,實現對電樞繞組兩端電壓的控制。 電壓-脈寬變換器結構如圖1所示,由三角波發生器、加法器和比較器組成。三角波發生器用于產生一定頻率的三角波UT,該三角波經加法器與輸入的指令信號UI相加,產生信號UI+UT,然后送入比較器。比較器是一個工作在開環狀態下的運算放大器,具有極高的開環增益及限幅開關特性。兩個輸入端的信號差的微弱變化,會使比較器輸出對應的開關信號。一般情況下,比較器負輸入端接地,信號UI+UT從正端輸入。當UI+UT時,比較器輸出滿幅度的正電平;當UI+UT時,比較器輸出滿幅
4、度的負電平。 電壓脈寬變換器對信號波形的調制過程如圖2所示。由于比較器的限幅特性,輸出信號S的幅度不變,但脈沖寬度隨UI的變化而變化,S的頻率由三角波的頻率所決定。 當指令信號UI時,輸出信號S為正負脈沖寬度相等的矩形脈沖。 當UI時,S的正脈寬大于負脈寬。 當UI時,S的正脈寬小于負脈寬。 當UI
5、TPP時(TPP是三角波的峰值),S為一正直流信號;當UITPP時,S為一負直流信號。2.直流電機驅動控制總流程圖 直流電機驅動控制電路分為控制信號電路、脈寬調制電路、驅動信號放大電路、H橋功率驅動電路等部分,控制總流程如圖3所示。 由圖3可以看出,首先由單片機發出電機邏輯控制信號,主要包括電機運轉方向信號Dir,電機調速信號PWM及電機制動信號Brake,然后由TL494進行脈寬調制,其輸出信號驅動H橋功率電路來驅動直流電機。其中H橋是由4個大功率增強型場效應管構成的,其作
6、用是改變電機的轉向,并對驅動信號進行放大。3. TL494脈沖寬度調制電路31 TL494各管腳功能。 在實現電機PWM控制的電路中,本系統選用TL494芯片,其內部電路由基準電壓產生電路、振蕩電路、間歇期調整電路、兩個誤差放大器、脈寬調制比較器以及輸出電路等組成。,共16個管腳,其功能結構如圖4所示。 TL494芯片廣泛應用于單端正激雙管式、半橋式、全橋式開關電源。其片內資源有【2】: 集成了全部的脈寬調制電路。 片內置線性鋸齒波振蕩器,外置振蕩元件
7、僅兩個(一個電阻和一個電容)。 內置誤差放大器。 內止5V參考基準電壓源。 可調整死區時間。 內置功率晶體管可提供500mA的驅動能力。 推或拉兩種輸出方式。 3.2工作原理簡述 TL494是一個固定頻率的脈沖寬度調制電路,內置了線性鋸齒波振蕩器,振蕩頻率可通過外部的一個電阻和一個電容進行調節,其振蕩頻率如下: 輸出脈沖的寬度是通過電容CT上的正極性鋸齒波電壓與另外兩個控制信號進行比較來實現。功
8、率輸出管Q1和Q2受控于或非門。當雙穩觸發器的時鐘信號為低電平時才會被選通,即只有在鋸齒波電壓大于控制信號期間才會被選通。當控制信號增大,輸出脈沖的寬度將減小。 控制信號由集成電路外部輸入,一路送至死區時間比較器,一路送往誤差放大器的輸入端。死區時間比較器具有120mV的輸入補償電壓,它限制了最小輸出死區時間,約等于鋸齒波周期的4%,當輸出端接地,最大輸出占空比為96%,而輸出端接參考電平時,占空比為48%。當把死區時間控制輸入端接上固定的電壓(范圍在03.3V之間)即能在輸出脈沖上產生附加的死區時間。
9、0; 該芯片具有抗干擾能力強、結構簡單、可靠性高以及價格便宜等特點。3.3基于TL494推挽式輸出的電路設計 該控制系統的具體實現電路如圖5所示。系統功率驅動選用MOSFET,其輸入阻抗很高,可直接由晶體三極管驅動。TL494的13腳用來控制輸出模式。在該系統中,選擇將該端輸入為低電平,這時TL494內觸發器Q1和Q2不起作用,兩路輸出相同,其頻率和振蕩器頻率相同、最大占空比為98%。4.H橋功率驅動原理與電路設計 驅動信號在經TL494的
10、脈寬調制后,在直流電機控制中常用H橋電路作為驅動器的功率驅動電路。這種驅動電路可方便地實現直流電機的四象限運行,分別對應正轉、正轉制動、反轉、反轉制動。由于功率MOSFET是壓控元件,具有輸入阻抗大、開關速度快、無二次擊穿現象等特點,滿足高速開關動作需求,因此常用功率MOSFET構成H橋電路的橋臂。H橋電路中的4個功率MOSFET分別采用N溝道型和P溝道型,而P溝道功率MOSFET一般不用于下橋臂驅動電機,上下橋臂分別用2個P溝道功率MOSFET和2個N溝道功率MOSFET。其電路圖如圖6所示。 圖圖中VCC為電機電源電壓,輸出端并聯
11、一只小電容,用于降低感性元件電機產生的尖峰電壓。4個二極管為續流二極管,可為線圈繞組提供續流回路。當電機正常運行時,驅動電流通過主開關管流過電機。當電機處于制動狀態時,電機工作在發電狀態,轉子電流必須通過續流二極管流通,否則電機就會發熱,嚴重時甚至燒毀。S來自TL494的輸出, -S可通過對S反相獲得。當S0時,VT1和VT4導通,S0時,VT2和VT3導通。 按照控制指令的不同情況,該功放電路及其所驅動的直流伺服電機可以有以下四種工作狀態:1)當UI0時,S的正負脈寬相等,直流分量為零,VT1和VT4的導通時間和VT2和VT3導通時間相等,通過電樞繞組中的平均電流為零,電動機不轉。2)當UI0時,S的正脈寬大于負脈寬,直流分量大于零,VT1和VT4的導通時間大于VT2和VT3導通時間,通過電樞繞組中的平均電流大于零,電動機正轉,且隨著UI增加,轉速增加。3) 當UI0時,S的直流分量小于零,VT1和VT4的導通時間小于VT2和VT3導通時間,通過電樞繞組中的平均電流小于零,電動機反轉,且反轉轉速隨著UI的減小而增加。4)當UITPP或UI-TPP時,S為正或負的直流信號,VT1和VT4于或VT2和VT3始終導通,電機在最高轉速下正轉或反轉。結束語&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論