




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第七章 雙饋風力發電機工作原理我們通常所講的雙饋異步發電機實質上是一種繞線式轉子電機,由于其定、轉子都能向電網饋電,故簡稱雙饋電機。雙饋電機雖然屬于異步機的范疇,但是由于其具有獨立的勵磁繞組,可以象同步電機一樣施加勵磁,調節功率因數,所以又稱為交流勵磁電機,也有稱為異步化同步電機。同步電機由于是直流勵磁,其可調量只有一個電流的幅值,所以同步電機一般只能對無功功率進行調節。交流勵磁電機的可調量有三個:一是可調節的勵磁電流幅值;二是可改變勵磁頻率;三是可改變相位。這說明交流勵磁電機比同步電機多了兩個可調量。通過改變勵磁頻率,可改變發電機的轉速,達到調速的目的。這樣,在負荷突變時,可通過快速控制勵磁
2、頻率來改變電機轉速,充分利用轉子的動能,釋放或吸收負荷,對電網擾動遠比常規電機小。改變轉子勵磁的相位時,由轉子電流產生的轉子磁場在氣隙空間的位置上有一個位移,這就改變了發電機電勢與電網電壓相量的相對位移,也就改變了電機的功率角。這說明電機的功率角也可以進行調節。所以交流勵磁不僅可調節無功功率,還可以調節有功功率。交流勵磁電機之所以有這么多優點,是因為它采用的是可變的交流勵磁電流。但是,實現可變交流勵磁電流的控制是比較困難的,本章的主要內容講述一種基于定子磁鏈定向的矢量控制策略,該控制策略可以實現機組的變速恒頻發電而且可以實現有功無功的獨立解耦控制,當前的主流雙饋風力發電機組均是采用此種控制策略
3、。一、 雙饋電機的基本工作原理設雙饋電機的定轉子繞組均為對稱繞組,電機的極對數為,根據旋轉磁場理論,當定子對稱三相繞組施以對稱三相電壓,有對稱三相電流流過時,會在電機的氣隙中形成一個旋轉的磁場,這個旋轉磁場的轉速稱為同步轉速,它與電網頻率及電機的極對數的關系如下:(3-1)同樣在轉子三相對稱繞組上通入頻率為的三相對稱電流,所產生旋轉磁場相對于轉子本身的旋轉速度為:(3-2)由式3-2可知,改變頻率,即可改變,而且若改變通入轉子三相電流的相序,還可以改變此轉子旋轉磁場的轉向。因此,若設為對應于電網頻率為50Hz時雙饋發電機的同步轉速,而為電機轉子本身的旋轉速度,則只要維持,見式3-3,則雙饋電機
4、定子繞組的感應電勢,如同在同步發電機時一樣,其頻率將始終維持為不變。(3-3)雙饋電機的轉差率,則雙饋電機轉子三相繞組內通入的電流頻率應為:(3-4)公式3-4表明,在異步電機轉子以變化的轉速轉動時,只要在轉子的三相對稱繞組中通入轉差頻率(即)的電流,則在雙饋電機的定子繞組中就能產生50Hz的恒頻電勢。所以根據上述原理,只要控制好轉子電流的頻率就可以實現變速恒頻發電了。根據雙饋電機轉子轉速的變化,雙饋發電機可有以下三種運行狀態:1. 亞同步運行狀態:在此種狀態下,由轉差頻率為的電流產生的旋轉磁場轉速與轉子的轉速方向相同,因此有。2. 超同步運行狀態:在此種狀態下,改變通入轉子繞組的頻率為的電流
5、相序,則其所產生的旋轉磁場的轉速與轉子的轉速方向相反,因此有。3. 同步運行狀態:在此種狀態下,轉差頻率,這表明此時通入轉子繞組的電流頻率為0,也即直流電流,與普通的同步電機一樣。下面從等效電路的角度分析雙饋電機的特性。首先,作如下假定:1. 只考慮定轉子的基波分量,忽略諧波分量2. 只考慮定轉子空間磁勢基波分量3. 忽略磁滯、渦流、鐵耗4. 變頻電源可為轉子提供能滿足幅值、頻率、功率因數要求的電源,不計其阻抗和損耗。發電機定子側電壓電流的正方向按發電機慣例,轉子側電壓電流的正方向按電動機慣例,電磁轉矩與轉向相反為正,轉差率S按轉子轉速小于同步轉速為正,參照異步電機的分析方法,可得雙饋發電機的
6、等效電路,如圖3-1所示:根據等效電路圖,可得雙饋發電機的基本方程式:(3-5)式中:l 、分別為定子側的電阻和漏抗l 、分別為轉子折算到定子側的電阻和漏抗l 為激磁電抗l 、分別為定子側電壓、感應電勢和電流l 、分別為轉子側感應電勢,轉子電流經過頻率和繞組折算后折算到定子側的值。l 轉子勵磁電壓經過繞組折算后的值,為再經過頻率折算后的值。頻率歸算:感應電機的轉子繞組其端電壓為,此時根據基爾霍夫第二定律,可寫出轉子繞組一相的電壓方程:= =式中,為轉子電流;為轉子每相電阻。圖3-1表示與式5-20相對應的轉子等效電路。為轉子不轉時的感應電動勢。繞組歸算:轉子的電磁功率(轉差功率),由此機械功率
7、其中,為同步轉速、為機械轉速。由上兩式可看出,機械轉矩與電磁轉矩一致。普通的繞線轉子電機的轉子側是自行閉合的,根據基爾霍夫電壓電流定律可以寫出普通繞線式轉子電機的基本方程式:(3-6)從等值電路和兩組方程的對比中可以看出,雙饋電機就是在普通繞線式轉子電機的轉子回路中增加了一個勵磁電源,恰恰是這個交流勵磁電源的加入大大改善了雙饋電機的調節特性,使雙饋電機表現出較其它電機更優越的一些特性。下面我們根據兩種電機的基本方程畫出各自的矢量圖,從矢量圖中說明引入轉子勵磁電源對有功和無功的影響。從矢量圖中可以看出,對于傳統的繞線式轉子電機,當運行的轉差率s和轉子參數確定后,定轉子各相量相互之間的相位就確定了
8、,無法進行調整。即當轉子的轉速超過同步轉速之后,電機運行于發電機狀態,此時雖然發電機向電網輸送有功功率,但是同時電機仍然要從電網中吸收滯后的無功進行勵磁。但從圖3-4中可以看出引入了轉子勵磁電壓之后,定子電壓和電流的相位發生了變化,因此使得電機的功率因數可以調整,這樣就大大改善了發電機的運行特性,對電力系統的安全運行就有重要意義。二、 雙饋發電機的功率傳輸關系風力機軸上輸入的凈機械功率(扣除損耗后)為,發電機定子向電網輸出的電磁功率為,轉子輸入/輸出的電磁功率為,s為轉差率,轉子轉速小于同步轉速時為正,反之為負。又稱為轉差功率,它與定子的電磁功率存在如下關系:如果將定義為轉子吸收的電磁功率,那
9、么將有:此處s可正可負,即若,則,轉子從電網吸收電磁功率,若,則,轉子向電網饋送電磁功率。下面考慮發電機超同步和亞同步兩種運行狀態下的功率流向:2.1 超同步運行狀態顧名思義,超同步就是轉子轉速超過電機的同步轉速時的一種運行狀態,我們稱之為正常發電狀態。(因為對于普通的異步電機,當轉子轉速超過同步轉速時,就會處于發電機狀態)。根據圖中的功率流向和能量守恒原理,流入的功率等于流出的功率因為發電機超同步運行,所以,所以上式可進一步寫成:將上述式子歸納得:超同步速,2.2 亞同步運行狀態即轉子轉速低于同步轉速時的運行狀態,我們可以稱之為補償發電狀態(在亞同步轉速時,正常應為電動機運行,但可以在轉子回
10、路通入勵磁電流使其工作于發電狀態)根據圖中3-7以及能量守恒原理,流入的功率等于流出的功率:因為發電機亞同步運行,所以,所以上式可進一步寫成:將上述式子歸納得到,亞同步速,三、 雙饋電機的數學模型上一節,我們從雙饋電機的穩態等效電路以及功率流向的角度分析了雙饋電機的工作原理,但這對于控制來說是遠遠不夠的,本節我們將從數學模型的角度來分析雙饋電機,為下一步的控制做準備。雙饋電機的數學模型與三相繞線式感應電機相似,是一個高階、非線性、強耦合的多變量系統。為了建立數學模型,一般作如下假設:1. 三相繞組對稱,忽略空間諧波,磁勢沿氣隙圓周按正弦分布2. 忽略磁路飽和,各繞組的自感和互感都是線性的3.
11、忽略鐵損4. 不考慮頻率和溫度變化對繞組的影響。在建立基本方程之前,有幾點必須說明:1. 首先要選定好磁鏈、電流和電壓的正方向。圖3-9所示為雙饋電機的物理模型和結構示意圖。圖中,定子三相繞組軸線A、B、C在空間上是固定,a、b、c為轉子軸線并且隨轉子旋轉,為轉子a軸和定子A軸之間的電角度。它與轉子的機械角位移的關系為,為極對數。各軸線正方向取為對應繞組磁鏈的正方向。定子電壓、電流正方向按照發電機慣例標示,正值電流產生負值磁鏈;轉子電壓、電流正方向按照電動機慣例標示,正值電流產生正值磁鏈。2. 為了簡單起見,在下面的分析過程中,我們假設轉子各繞組各個參數已經折算到定子側,折算后定、轉子每相繞組
12、匝數相等。于是,實際電機就被等效為圖3-9所示的物理模型了。雙饋電機的數學模型包括電壓方程、磁鏈方程、運動方程、電磁轉矩方程等。3.1 電壓方程選取下標s表示定子側參數,下標r表示轉子側參數。定子各相繞組的電阻均取值為,轉子各相繞組的電阻均取值為。于是,交流勵磁發電機定子繞組電壓方程為:轉子電壓方程為:可用矩陣表示為:(3-7)或寫成:式中:定子和轉子相電壓的瞬時值;定子和轉子相電流的瞬時值;各組繞組的全磁鏈;定子和轉子的繞組電阻微分算子3.2 磁鏈方程定轉子各繞組的合成磁鏈是由各繞組自感磁鏈與其它繞組互感磁鏈組成,按照上面的磁鏈正方向,磁鏈方程式為:(3-8)或寫成:式中的電感是個6*6的矩
13、陣,主對角線元素是與下標對應的繞組的自感,其他元素是與下標對應的兩繞組間的互感。由于各相繞組的對稱性,可認定定子各相漏感相等,轉子各相漏感也相等,定義定子繞組每相漏感為,定子每相主電感為,轉子繞組每相漏感為,轉子每相主電感為,由于折算后定、轉子繞組匝數相等,且各繞組間互感磁通都通過氣隙,磁阻相等,故可認為:。定子各相自感為:轉子各相自感為:兩相繞組之間只有互感。互感可分為兩類:1. 定子三相彼此之間和轉子三相彼此之間的位置是固定的,故互感為常值2. 定子任一相和轉子任一相之間的位置是變化的,互感是的函數先看其中的第一類互感,由于三相繞組的軸線在空間的相位差是,在假設氣隙磁通為正弦分布的條件下,
14、忽略氣隙磁場的高次諧波,互感為:于是:至于第二類定、轉子間的互感,當忽略氣隙磁場的高次諧波,則可近似為是定、轉子繞組軸線電角度的余弦函數。當兩套繞組恰好在同一軸線上時,互感有最大值(互感系數),于是:代入磁鏈方程,就可以得到更進一步的磁鏈方程。這里為方便起見,將他寫成分塊矩陣的形式:其中:;和兩個分塊矩陣互為轉置,且與轉角位置有關,他們的元素是變參數,這是系統非線性的一個根源。為了把變參數轉化為常參數需要進行坐標變換,這將在后面討論。需要注意的是:1. 定子側的磁鏈正方向與電流正方向關系是正值電流產生負值磁鏈,不同于一般的電動機慣例,所以式3-8中出現了負號“-”;2. 轉子繞組經過匝數比變換
15、折算到定子側后,定、轉子繞組匝數相等,且各繞組間互感磁通都通過氣隙,磁阻相同,故可以認為轉子繞組主電感、定子繞組主電感與定轉子繞組間互感系數都相等。即3.3 運動方程交流勵磁電機內部電磁關系的建立,離不開輸入的機械轉矩和由此產生的電磁轉矩之間的平衡關系。簡單起見,忽略電機轉動部件之間的摩擦,則轉矩之間的平衡關系為:(3-9)式中,為原動機輸入的機械轉矩,為電磁轉矩,為系統的轉動慣量,為電機極對數,為電機的電角速度。從磁場能量根據機電能量轉換原理,可以得出電磁轉矩方程:=應該指出,上述公式是在磁路為線性、磁場在空間按正弦分布的假定條件下得出的,但對定、轉子的電流波形沒有任何假定,它們都是任意的。
16、因此,上述電磁轉矩公式對于研究由變頻器供電的三相轉子繞組很有實用意義。上述若干式子構成了交流勵磁發電機在三相靜止軸系上的數學模型。可以看出,該數學模型即是一個多輸入多輸出的高階系統,又是一個非線性、強耦合的系統。分析和求解這組方程式非常困難的,即使繪制一個清晰的結構圖也并非易事。為了使交流勵磁電機具有可控性、可觀性,必須對其進行簡化、解耦,使其成為一個線性、解耦的系統。其中簡化、解耦的有效方法就是矢量坐標變換。四、 坐標變換及變換陣4.1 交流電機的時空矢量圖根據電路原理,凡隨時間作正弦變化的物理量(如電動勢、電壓、電流、磁通等)均可用一個以其交變頻率作為角速度而環繞時間參考軸(簡稱時軸t)逆
17、時針旋轉的時間矢量(即相量)來代替。該相量在時軸上的投影即為縮小倍的該物理量的瞬時值。我們這里介紹的時空矢量圖表示法是一種多時軸單相量表示法,即每相的時間相量都以該相的相軸作為時軸,而各相對稱的同一物理量用一根統一的時間向量來代表。如圖3.10所示,只用一根統一的電流相量(定子電流)即可代表定子的對稱三相電流。不難證明,在A上的投影即為該時刻瞬時值的倍;在B上的投影即為該時刻瞬時值的倍;在C上的投影即為該時刻瞬時值的倍有了統一時間相量的概念,我們就可以方便地將時間相量跟空間矢量聯系起來,將他們畫在同一矢量圖中,得到交流電機中常用的時空矢量圖。在圖3-11所示的時空矢量圖中,我們取各相的相軸作為
18、該相的時軸。假設某時刻達到正最大,則此時刻統一相量應與A重合。據旋轉磁場理論,這時由定子對稱三相電流所生成的三相合成基波磁動勢幅值應與A重合,即應與A重合,亦即與重合。由于時間相量的角頻率跟空間矢量的電角速度相等,所以在任何其他時刻,與都始終重合。為此,我們稱與由它所生成的三相合成基波磁動勢在時空圖上同相。在考慮鐵耗的情況下,應滯后于一個鐵耗角,磁通相量與重合。定子對稱三相電動勢的統一電動勢相量應落后于為90度。由電機學我們知道,當三相對稱的靜止繞組A、B、C通過三相平衡的正弦電流、時產生的合成磁勢F,它在空間呈正弦分布,并以同步速度(電角速度)順著A、B、C的相序旋轉。如圖3-12-a所示,
19、然而產生旋轉磁勢并不一定非要三相電流不可,三相、四相等任意多相對稱繞組通以多相平衡電流,都能產生旋轉磁勢。如圖3-12-b所示,所示為兩相靜止繞組、,它們在空間上互差90度,當它們流過時間相位上相差90度的兩相平衡的交流電流、時,也可以產生旋轉磁動勢。當圖3-12-a和圖3-12-b的兩個旋轉磁動勢大小和轉速都相等時,即認為圖3-12-a中的兩相繞組和圖3-12-b中三相繞組等效。再看圖3-12-c中的兩個匝數相等且相互垂直的繞組d和q,其中分別通以直流電流和,也能夠產生合成磁動勢F,但其位置相對于繞組來說是固定的。如果讓包含兩個繞組在內的整個鐵芯以轉速旋轉,則磁勢F自然也隨著旋轉起來,稱為旋
20、轉磁勢。于是這個旋轉磁勢的大小和轉速與圖3-12-a和圖3-12-b中的磁勢一樣,那么這套旋轉的直流繞組也就和前兩套固定的交流繞組等效了。當觀察者站在圖c中的兩相旋轉繞組d、q鐵芯上與繞組一起旋轉時,在觀察者看來這時兩個通以直流電流的相互垂直的靜止繞組。這樣就將對交流電機的控制轉化為類似直流電機的控制了。在交流勵磁電機中,定子三相繞組、轉子三相繞組都可以等效成這樣的兩相旋轉繞組。由于相互垂直的原因,定子兩相軸之間和轉子兩相軸之間都沒有互感,又由于定子兩相軸與轉子兩相軸之間沒有相對運動(因為定、轉子磁勢沒有相對運動),其互感必然是常數。因而在同步兩相軸系電機的微分方程就必然是常系數,這就為使用距
21、陣方程求解創造了條件。習慣上我們分別稱圖a,b,c中三種坐標系統為三相靜止坐標系(a-b-c坐標系)、兩相靜止坐標系(坐標系),兩相旋轉坐標系(d-q-0坐標系)。要想以上三種坐標系具有等效關系,關鍵是要確定、與、和、之間的關系,以保證它們產生同樣的旋轉磁動勢,而這就需要我們引入坐標變換矩陣。坐標變換的方法有很多,這里我們只介紹根據等功率原則構造的變換陣,可以證明根據等功率原則構造的變換陣的逆與其轉置相等,這樣的變換陣屬于正交變換。4.2 3S/2S變換圖3.4所示為交流電機的定子三相繞組A、B、C和與之等效的兩相電機定子繞組各相磁勢的空間位置。當兩者的旋轉磁場完全等效時,合成磁勢沿相同軸向的
22、分量必定相等,即三相繞組和兩相繞組的瞬間磁勢沿軸的投影相等,即:即:式中,、分別為三相電機和兩相電機定子每相繞組匝數。經計算并整理后,用距陣表示為:()簡記為:為求其逆變換,引入另一個獨立于、的新變量,稱之為零序電流,并定義:()式中,K為待定系數。對兩相系統而言,零序電流是沒有意義的,這里只是為了純數學上的求逆的需要而補充定義的一個其值為零的零序電流(相應坐標系才稱為坐標系)。需要說明的是,這并不影響總的變換過程。式 和式3.3.2合并后,成為:將求逆,得到:根據前面所述的等功率原則,要求。據此,經過計算整理可得,于是:()()式 和式3.3.4即為定子三相/兩相靜止軸系變化矩陣,以上兩式同
23、樣適用于定子電壓和磁鏈的變化過程。需要注意的是,當把以上兩式運用于轉子軸系的變換時,變換后得到的兩相軸系和轉子三相軸系一樣,相對轉子實體是靜止的,但是,相對于靜止的定子軸系而言,卻是以轉子角頻率旋轉的。因此和定子部分的變換不同,轉子部分實際上是三相旋轉軸系變換成兩相旋轉軸系。4.3 2S/2r變換如圖3-14所示,為定子電流空間矢量,圖中d-q-0坐標系是任意同步旋轉坐標系,旋轉角速度為同步角速度。由于兩相繞組在空間上的位置是固定的,因而軸和軸的夾角隨時間而變化(),在矢量變換控制系統中,通常稱為磁場定向角。由上圖可以看出:令:()式表示了由兩相同步旋轉坐標系到兩相靜止坐標系的矢量旋轉變換矩陣
24、。由于變換矩陣是一個正交矩陣,所以。因而,由靜止坐標系變換到同步旋轉坐標系的矢量變換方程式為:()令:()式表示了兩相靜止坐標系到兩相同步旋轉坐標系的矢量旋轉變換矩陣。仿照兩相同步旋轉軸系到兩相靜止坐標系的矢量旋轉變換,可以得到旋轉兩相d-q-0軸系到兩相靜止軸系的坐標變換過程。()式中,、為經變換所得的轉子兩相旋轉d-q-0軸系的電流,、為兩相靜止軸系下的電流,為轉子轉過的空間電角度。(注:此處應是,而、坐標系應隨轉子轉動。但如果假設轉子不動,則)4.4 3S/2r變換將3S/2S變換和2S/2R變換合并成一步就得到三相靜止坐標系和d-q-0坐標系之間的定子量的變換矩陣,推倒如下:按式,有:
25、又由于:,代入上式可得:=()由于等功率坐標變換矩陣為正交矩陣,易知:兩相同步旋轉坐標系下的轉子量可以經過如下變換得到:先利用式的變換矩陣得到-q-0軸系下的轉子量;再利用式實現到坐標系的轉換;最后利用式的變換矩陣,最終得到兩相同步旋轉坐標系下的轉子量。經推導,以上三個步驟可合并為一個坐標變換矩陣:=(3.3.10)同樣,以上變換也滿足等功率原則,該變換矩陣仍為正交矩陣。由于轉子繞組變量可以看作是處在一個以角速度旋轉的參考坐標系下,對應式,轉子各變量可直接以角度差的關系變換到同步d-q坐標系下(相應地,)。顯然,式與這一思路完全吻合。最后,有必要指出,以上坐標變換矩陣同樣適用于電壓和磁鏈的變換
26、過程,而且變換是以各量的瞬時值為對象的,同樣適用于穩態和動態。對三相坐標系到兩相坐標系的變換而言,由于電壓變換矩陣與電流變換矩陣相同,兩相繞組的額定相電流和額定電壓均增加到三相繞組額定值的倍,因此每相功率增加到3/2倍,但是相數已由3變為2,故總功率保持不變。五、 同步旋轉兩相d-q坐標系下雙饋發電機的數學模型定子繞組接入無窮大電網,定子旋轉磁場電角速度為同步角速度,因此,前面我們選用在空間中以恒定同步速旋轉的d-q-0坐標系下的變量替代三相靜止坐標系下的真實變量來對電機進行分析。在穩態時,各電磁量的空間矢量相對于坐標軸靜止,這些電磁量在d-q-0坐標系下就不再是正弦交流量,而成了直流量。交流
27、勵磁發電機非線性、強耦合的數學模型在d-q-0同步坐標系中變成了常微分方程,電流、磁鏈等變量也以直流量的形式出現,如圖3-15所示:采用前面的正方向規定,即定子取發電機慣例,轉子取電動機慣例時,三相對稱雙饋發電機的電壓方程、磁鏈方程、運動方程和功率方程及其詳細推倒過程如下:5.1 電壓方程1、定子電壓方程要實現三相坐標系向同步旋轉d-q-0坐標系的變換,可利用坐標變換矩陣來進行。重寫三相坐標系下的定子電壓方程如下:對上式兩邊乘以坐標變換矩陣,有:即:式中:對于定子繞組:于是d-q-0坐標系下定子電壓方程可表示為(略寫零序分量):()2、轉子電壓方程同樣,要實現轉子三相坐標系向同步旋轉d-q-0
28、坐標系的變換,可利用坐標變化矩陣來進行。重寫三相坐標系下的轉子電壓方程如下:在進行類似定子電壓方程坐標變換的過程后,結果是(略寫零序分量):()式中:5.2 磁鏈方程重寫三相坐標系下的磁鏈方程如下:利用坐標變換矩陣和將定子三相磁鏈和轉子三相磁鏈變換到d-q-0坐標系下,推導如下:對上式兩邊乘以得:即:化簡的過程比較繁瑣,本章不再列出具體化簡過程。由以上推導,最終可得d-q-0坐標系下交流勵磁發電機磁鏈方程為:(略寫零序分量)其中,為同步d-q-0坐標系下等效定子繞組與等效轉子繞組間互感;為同步d-q-0坐標系下等效定子每相繞組全自感;為同步d-q-0坐標系下等效轉子每相繞組全自感;即有定子磁鏈
29、方程:()轉子磁鏈方程:(3.4.4)5.3 運動方程、功率方程變換到d-q-0同步旋轉坐標系下后,運動方程形式沒有變化:但電磁轉矩方程有變化:()定子有功功率和無功功率分別為:()轉子有功功率和無功功率分別為:()式3.4.8一起構成了雙饋發電機在d-q-0同步旋轉坐標系下完整的數學模型。可以看出,這種數學模型消除了互感之間的耦合,比三相坐標系下的數學模型要簡單的多。它們是一組常系數微分方程,這就是坐標變換的最終目的所在,也為下一節將要分析的雙饋風力發電系統定子磁鏈定向的矢量控制策略奠定了基礎。六、 雙饋風力發電機勵磁系統矢量控制方法在上一節中我們已經提到矢量控制的概念,我們利用矢量坐標變換
30、方法得出了同步旋轉d-q-0坐標系下交流勵磁發電的數學模型。有了這一數學模型,我們便實現了非線性、強耦合的三相交流電機系統到一個線性、解耦系統的轉變。然而,我們前面只規定d、q兩坐標軸的垂直關系和旋轉角速度。如果進一步對d-q-0軸系的取向加以規定,使其成為特定的同步旋轉坐標系,這將進一步簡化前面得出的d-q-0軸系下的數據模型,對矢量控制系統的實現具有關鍵的作用。選擇特定的同步旋轉d-q-0坐標系,即確定d、q軸系的取向,稱之為定向。選擇電機某一旋轉磁場軸作為特定的同步旋轉坐標軸,則稱之為磁場定向。食糧控制系統也稱為磁場(磁鏈)定向控制系統,本節要討論的就是雙饋風力發電機基于定子磁鏈定向的矢
31、量控制策略。6.1 定子磁鏈定向矢量控制的基本概念矢量控制理論產生于20世紀60年代末,隨著電力電子學、計算機控制技術和現代控制理論的發展,矢量控制技術逐步得到了應用。最初它是從電動機交流調速的應用中發展起來的,通常異步電動機矢量控制系統是以轉子磁鏈為基準,將轉子磁鏈方向定為同步坐標系d軸;同步電動機矢量控制系統是以氣隙合成磁鏈為基準,將氣隙磁鏈方向定為同步坐標軸d軸。但是變速恒頻發電系統有別于電動機調速系統,若仍以轉子磁鏈或氣隙磁鏈定向,由于定子繞組中漏抗壓降的影響,會使得釘子端電壓矢量和矢量控制參考軸之間存在一定的相位差。這樣定子有功功率和無功功率的計算將比較復雜,影響控制系統的實時處理。
32、電網的電壓頻率被認為是不變的,當發電機并入這樣的電網后,它的定子電壓是常量,只有定子的電流時可以受到控制的,對發電機功率的控制,在并網的條件下,可以認為就是對電流的控制。并網運行的雙饋風力發電機,其定子繞組電流始終運行在工頻50Hz,在這樣的頻率下,定子繞組的電阻比其電抗要小的多,因此通常可以忽略電機定子繞組電阻。由靜止坐標系下定子電壓表達式可以看出,略去定子電阻后,發電機的定子磁鏈矢量與定子電壓矢量的相位差正好90度,由同步旋轉d-q-0坐標系下的定子電壓方程同樣可以驗證這一點,如果取定子磁鏈矢量方向為d-q-0坐標系d軸,則定子電壓空間矢量正好落在超前d軸90度的q軸上,如圖3-16所示:
33、將上一節我們得到的同步旋轉d-q-0坐標系下用于矢量控制的電機模型重寫如下(定子繞組按發電機慣例,轉子繞組按照電動機慣例):定子電壓方程:轉子電壓方程:定子磁鏈方程:轉子磁鏈方程:運動方程:定子輸出功率方程:如圖3-16所示,如果將d軸恰好選在定子磁鏈矢量上,也即d軸的轉速和相位都與相同,則,那么,又因為感應的電壓超前于90度相位,所以全部落在軸上。又因為上述方程組是在同步旋轉坐標系d-q-0下建立的,所以各量都變成了直流量,所以:通過以上分析可以得出如下結論:;將上式代入定子輸出功率方程,有:由上式可知,在定子磁鏈定向下,雙饋發電機定子輸出有功功率、無功功率分別與定子電流在d、q軸上的分量、
34、成正比,調節、可分別獨立調節、,兩者實現了解耦控制。因此,常稱為有功分量,為無功分量。因為對于、的控制是通過交流勵磁發電機轉子側的變換器進行的,應該推導轉子電流、電壓和、之間的關系,以便實現對交流勵磁發電機有功、無功的獨立控制。把、代入定子磁鏈方程,整理可得:上式建立了轉子電流分量與定子電流分量之間的關系。將上式代入轉子磁鏈方程,整理可得:,式中:、再將上式代入轉子電壓方程,進一步可整理得到:另:則有:式中,、為實現轉子電壓、電流解耦控制的解耦項,、為消除d-q軸轉子電壓、電流分量間交叉耦合的補償項。將轉子電壓分解為解耦項和補償項后,既簡化了控制,又能保證控制的精度和動態響應的快速性。有了、后
35、,就可以通過坐標變換得到三相坐標系下的轉子電壓量:把這個轉子三相電壓分量用作調制波去產生轉子側勵磁變換器所需要的指令信號,用于控制逆變主電路晶體管的通斷,以產生所需頻率、大小、相位的三相交流勵磁電壓。通過以上各式就可以建立定子電流有功分量、無功分量與其它物理量之間的關系,以上四個關系式構成了定子磁鏈定向雙饋發電機的矢量控制方程。根據上面得出的矢量控制方程可以設計出雙饋風力發電系統在定子磁鏈定向下的矢量控制系統框圖,如圖3-17所示。可見,系統采用雙閉環結構,外環為功率控制環,內環為電流控制環。在功率閉環中,有功指令是由風力機特性根據風力機最佳轉速給出,無功指令是根據電網需求設定的。反饋功率、則是通過對發電機定子側輸出電壓、電流的檢測后再經過坐標變換后計算得到的。6.2 定子磁鏈觀測既然是以定子磁鏈定向的矢量控制系統,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 酒店客房培訓
- 2025合同范本:商鋪租賃合同協議書
- 2025年版權保留轉讓合同
- 護理培訓成果匯報
- 2025商業店鋪租賃合同范本2
- 2025租賃合同的擔保方式
- 2025網約車租賃服務合同
- 2025勞動合同范本標準模板
- 2025標準設備購買合同參考范本
- 2025合作伙伴合同書 企業合作伙伴合同撰寫
- 企業重組相關稅收政策培訓教學課件(38張)
- midas NFX使用指南(八)
- 肝癌的防治(大眾科普版本)-PPT課件
- 成都高新區小學數學五年級下冊半期考試數學試卷
- 職業危害防治實施管理臺賬
- 2018年人教版九年級英語單詞表
- 畢業設計U型管換熱器設計說明書
- 蘋果中國授權經銷商協議
- KGW船用起重機維護使用手冊
- 怎樣確保騎車安全-1
- 混凝土裂縫修補工程驗收記錄表
評論
0/150
提交評論