




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、兩角和與差公式 倍角公式1、若是第三象限角,且,則( ).2、已知,則 ( )A B C D3、若則( )A. B C. D4、若都是銳角,且,則()A B C或 D或5、已知函數的圖象的一個對稱中心是點,則函數 的圖象的一條對稱軸是直線( )A B C D6、在中,若,則是( )A銳角三角形 B直角三角形 C鈍角三角形 D無法確定7、 已知,則( )ABCD 8、若sin sin ,cos cos ,則cos()等于()A B. C D.9、設a (sin56°cos56°), bcos50°·cos128°cos40°·
2、cos38°,c (cos80°2cos250°1),則a,b,c的大小關系是 () Aa>b>c Bb>a>c Cc>a>b Da>c>b10、若函數f(x)(sinxcosx)22cos2xm在上有零點,則實數m的取值范圍為()(A)1, (B)1,1 (C)1, (D),111、已知,則= .12、已知 .13、已知 .14、若tan(+)=,則tan=15、若,且為第三象限角,則_.16、已知tan ,sin(),且,(0,),則sin 的值為 .17、關于的不等式的解集為 .18、已知為銳角,且,則_ 19
3、、中,若,則 20、若,則的值是 21、已知銳角,滿足,則的最大值為 .22、已知,且,則 。23、已知是方程的兩根,則 24、已知,則 25、已知,且,則= 26、設,則a,b,c的大小關系為_27、函數y(acosxbsinx)cosx有最大值2,最小值1,則實數(ab)2的值為.28、tan20°tan40°·tan20°·tan40°.29、已知函數f(x)sin2 xsin xcos x.(1)求f 的值(2)設(0,),f ,求sin 的值30、已知函數f(x)cossin.(1)求函數f(x)的最小正周期;(2)若,且f
4、,求f(2)的值31、已知的值.32、已知,求sin2a的值.33、設函數f(x)2cos2xsin2xa(aR).(1)求函數f(x)的最小正周期;(2)當x0,時,f(x)的最大值為2,求a的值.34、設的值.35、已知,求的值36、求值:。37、已知,求證:38、(1) 已知 ()1, 3, 求.(2) 設cos(), sin(), 且, 0<<,求cos().試卷第3頁,總3頁參考答案1、C 2、C 3、C 4、A 5、D 6、A 7、C 8、B 9、B 10、A11、 12、 13、 14、 15、 16、17、 18、 19、 20、 21、22、 23、-1 24、2
5、 25、1 26、acb 27、8 28、三、解答題29、f(x)sin2 xsin xcos x×sin 2xsin,(1)fsin0(2)fsin,0sin,又,.,cos,sin sin××.30、 (1)f(x)cos xsin xcos xsin xcos xsin.f(x)的最小正周期為2.(2)由(1)知f(x)sin.所以f sinsin ,cos .sin 22sin cos 2××,cos 22cos212×21,f(2)sinsin 2cos 2××.32、 又 sin2a=35、 由得又因為,于是;36、原式而即原式37、 得 38、 cos() (1) ()1, 3,().(2) cos(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 微生物檢測技術的倫理問題探討試題及答案
- 硅冶煉在太陽能熱利用的潛力考核試卷
- 2024年微生物檢測技術的整合試題及答案
- 2025年銀行從業資格證考試關鍵策略試題及答案
- 類似品密封材料的耐磨損機理研究考核試卷
- 2024年項目管理考點理解試題及答案
- 全景回顧特許金融分析師考試試題及答案
- 電視機智能傳感技術與運動追蹤考核試卷
- 項目管理專業人士的考試思路試題及答案
- 磷肥生產設備操作與維護考核卷考核試卷
- 血透患者敘事護理故事
- 義務教育小學科學課程標準-2022版
- 江西省南昌市2023-2024學年八年級下學期期中英語試題(含聽力)【含答案解析】
- 2024年全國國家版圖知識競賽題庫及答案
- 新教師三筆字培訓課件
- 藍色西湖大學頂部導航欄博士碩士研究生畢業論文答辯模板.x
- 2024老年阻塞性睡眠呼吸暫停患者無創正壓通氣應用規范專家共識(附圖表)
- 佛朗克變頻器用戶手冊
- 2024年中考英語真題-帶答案
- 2023年廣東省廣州市天河區中考一模英語試題(解析版)
- 包裝函范文英文函電(3篇)
評論
0/150
提交評論