安徽02-13年中考數學試題分類解析專題4:圖形的變換_第1頁
安徽02-13年中考數學試題分類解析專題4:圖形的變換_第2頁
安徽02-13年中考數學試題分類解析專題4:圖形的變換_第3頁
安徽02-13年中考數學試題分類解析專題4:圖形的變換_第4頁
安徽02-13年中考數學試題分類解析專題4:圖形的變換_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、1、 選擇題1. (2003安徽省4分)(華東版教材試驗區試題)下面是空心圓柱體在指定方向上的視圖,正確的是【 】 A: B: C: D:【答案】C。【考點】簡單幾何體的三視圖。【分析】找到從正面看所得到的圖形即可,注意所有的棱都應表現在主視圖中:圓柱的主視圖是矩形,里面有兩條用虛線表示的看不到的棱,故選C。2. (2004安徽省4分)(華東版教材實驗區試題)如圖,O是正六邊形ABCDEF的中心,下列圖形中可由OBC平移得到的是【 】 (A)OCD (B)OAB (C)OAF (D)OEF【答案】C。【考點】平移的性質。【分析】根據平移的性質,結合圖形,對圖中的三角形進行分析,求得正確答案:O

2、CD、OEF、OAB方向發生了變化,不屬于平移得到;ODE、OAF形狀和大小沒有變化,屬于平移得到。可以由OBC平移得到的是ODE,OAF。故選C。3. (2005安徽省大綱4分)用兩個完全相同的直角三角板,不能拼成下列圖形的是【 】A、平行四邊形B、矩形 C、等腰三角形D、梯形【答案】D。【考點】直角三角形的性質。【分析】當把完全相同的兩塊三角板拼成的圖形有三種情況:當把一相同直角邊重合,且兩個直角的頂角也重合時,所成的圖形是等腰三角形; 當把一相同直角邊重合,且兩個直角的頂角不重合時,所成的圖形是平行四邊形; 當斜邊重合,且兩個三角形的非同角的頂點重合時,所成的圖形是矩形。但不能形成梯形。

3、故選D。4. (2005安徽省課標4分)小亮在鏡中看到身后墻上的時鐘如下,你認為實際時間最接近八點的是【 】【答案】D。【考點】鏡面對稱。【分析】根據鏡面對稱的性質,在平面鏡中的鐘面上的時針、分針的位置和實物應關于過12時、6時的直線成軸對稱。所以,實際時間為8點的時針關于過12時、6時的直線的對稱點是4點,那么8點的時鐘在鏡子中看來應該是4點的樣子,所以應該是C或D答案之一,這兩個答案中更接近八點的應該是第四個圖形。故選D。5. (2005安徽省課標4分)下列各物體中,是一樣的為【 】 A. (1)與(2) B. (1)與(3) C. (1)與(4) D. (2)與(3)【答案】B。【考點】

4、幾何體的視圖。【分析】根據幾何體的塊數,在同一平面的幾何體的形狀以及相應的三視圖來進行判斷:(4)比其它圖形少一塊;(2)互相垂直的6塊幾何體應在一個平面;易得(1)為物體的前面;(3)為物體的左側面。故選B。6. (2006安徽省大綱4分)將平行四邊形紙片沿過其對稱中心的任一直線對折,下圖不可能的是【 】【答案】B。【考點】折疊及立體圖形的表面展開,平行四邊形的性質【分析】因為平行四邊形是中心對稱圖形,則折疊的兩部分為全等的圖形,故B不可能。故選B。7. (2006安徽省大綱4分)(華東版教材實驗區試題)下列現象不屬于平移的是【 】A小華乘電梯從一樓到三樓 B足球在操場上沿直線滾動C一個鐵球

5、從高處自由落下 D小朋友坐滑梯下滑【答案】B。【考點】生活中的平移。【分析】根據平移不改變圖形的形狀、大小和方向得出:足球在操場上沿直線滾動時,足球的方向不斷發生變化,不是平移。故選B。8. (2006安徽省課標4分)如圖,ABC中,B=90°,C=30°,AB=1,將ABC繞頂點A旋轉180°,點C落在C處,則CC的長為【 】A B4 C D 【答案】B。【考點】旋轉的性質,解直角三角形。【分析】在ABC中,B=90°,C=30°,AB=1,AC=2。將ABC繞頂點A旋轉180°,點C落在C處,AC=AC=2。CC=4。故選B。9.

6、 (2008安徽省4分)如圖是某幾何體的三視圖及相關數據,則判斷正確的是【 】A. ac B. bc C. 4a2+b2=c2 D. a2+b2=c2【答案】D。【考點】由三視圖判斷幾何體,勾股定理。【分析】由三視圖可知,該幾何體是圓錐,則由于圓錐的母線、高和底面半徑構成直角三角形,根據勾股定理,得a2+b2=c2。故選D。10. (2009安徽省4分)一個長方體的三視圖如圖所示,若其俯視圖為正方形,則這個長方體的高和底面邊長分別為【 】A3,B2,C3,2D2,3【答案】C。【考點】簡單幾何體的三視圖,正方形的性質,勾股定理。【分析】由俯視圖和主視圖知道棱柱的高為3,底面正方形對角線長是,根

7、據正方形的性質和勾股定理列出方程求解: 設底面邊長為x,則,解得x=2,即底面邊長為2。故選C。11. (2009安徽省4分)如圖,下列四個幾何體中,其主視圖、左視圖、俯視圖中只有兩個相同的是【 】【答案】D。【考點】簡單幾何體的三視圖。【分析】根據正方體、球體、三棱柱以及圓柱體的三視圖易得出答案:正方體和球體的主視圖、左視圖以及俯視圖都是相同的,排除A、B;三棱柱的正視圖是一個矩形,左視圖是一個三角形,俯視圖也是一個矩形,但與正視圖的矩形不相同,排除C;圓柱的正視圖以及俯視圖是相同的,都是矩形。故選D。12. (2011安徽省4分)下圖是五個相同的小正方體搭成的幾何體,其左視圖是【 】 AB

8、CD【答案】A。【考點】幾何體的三視圖。【分析】根據幾何體的三視圖的視圖規則,直接得出結果:從左邊看,上有一個小正方體且在左邊,下有兩個小正方體,故選A。13. (2012安徽省4分)下面的幾何體中,主(正)視圖為三角形的是【 】【答案】C。【考點】判斷立體圖形的三視圖。【分析】主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形。因此,根據這幾個常見幾何題的視圖可知:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個相連的矩形。故選C。14.(2013年安徽省4分)圖中所示的幾何體為圓臺,其主(正)視圖正確的是【 】【答案】A。【考點】

9、簡單幾何體的三視圖。【分析】找到從正面看所得到的圖形即可:從正面看易得是一個梯形,且上底長于下底。故選A。二、填空題1. (2002安徽省4分)如圖,在矩形ABCD中,AB3,AD4P是AD上的動點,PEAC于E,PEBD于F則PEPF的值為【 】A B2 C D【答案】A。【考點】動點型問題,矩形的性質,相似三角形的判定和性質。【分析】設AP=x,則PD=4x。EAP=EAP,AEP=ADC,AEPADC。,即。同理可得DFPDAB,即。故選A。2. (2005安徽省大綱4分)小明在平面鏡里看到背后墻上電子鐘顯示的時間如圖所示,此刻的實際時間應該是 【答案】21:05。【考點】鏡面對稱。【分

10、析】根據鏡面對稱的性質,題中所顯示的時刻與21:05成軸對稱,所以此時實際時刻為21:05。3. (2007安徽省5分)如圖,一個立體圖形由四個相同的小立方體組成圖1是分別從正面看和從左面看這個立體圖形得到的平面圖形,那么原立體圖形可能是圖2中的 。(把下圖中正確的立體圖形的序號都填在橫線上)【答案】。【考點】由三視圖判斷幾何體。【分析】根據圖1的正視圖和左視圖,可以判斷出是不符合這些條件的,因此原立體圖形可能是圖2中的。4.(2013年安徽省4分)已知矩形紙片ABCD中,AB=1,BC=2,將該紙片疊成一個平面圖形,折痕EF不經過A點(E、F是該矩形邊界上的點),折疊后點A落在A處,給出以下

11、判斷:當四邊形A,CDF為正方形時,EF=當EF=時,四邊形ACDF為正方形當EF=時,四邊形BACD為等腰梯形;當四邊形BACD為等腰梯形時,EF=。 其中正確的是 (把所有正確結論序號都填在橫線上)。【答案】。【考點】折疊問題,折疊對稱的性質,矩形的性質,正方形的判定和性質,勾股定理,等腰梯形的判定和性質,性質全等三角形的判定和性質。【分析】根據相關知識逐一作出判斷:AB=1,BC=2,如圖,當四邊形ACDF為正方形時,AC=CD= AF=2,AFBC。 AE=2。根據勾股定理得EF=。判斷正確。當EF=時,由知,只要EF與AB成450角即可,此時的EF與中的EF平行即可,這時,除的情況外

12、,其它都不構成正方形。判斷錯誤。當EF=時,由勾股定理知BD=,此時,EF與BD重合。由折疊對稱和矩形的性質知,CD=AB= AB,且CD與 AB不平行。如圖,過點A作AGBD于點G,過點C作CHBD于點FH,則AB=CD,ABG=ABD=CDH,AGB =CND,AGB CHD(AAS)。AG=CH。ACBD。四邊形BACD為等腰梯形。判斷正確。 當四邊形BACD為等腰梯形時,由AB=CD,ABD=CDB=ABD,知點A是點A關于BD的對稱點,即A是點A沿BD折疊得到,所以,EF與BD重合,EF=BD=。判斷正確。 綜上所述,判斷正確的是。三、解答題1. (2002安徽省8分)(華東版教材實

13、驗區試題)如圖是一個幾何體的二視圖,求該幾何體的體積(取3.14)【答案】解:VV圓柱V長方體·()2·3240×30×2540048(cm3)。答:此幾何體的體積為40048cm3。【考點】由三視圖判斷幾何體,圓柱的計算。【分析】俯視圖有一個圓與一個矩形,在正視圖看來有兩個矩形,則可以判斷該幾何體是一個長方體與圓柱的結合根據長方體以及圓柱的體積計算公式解出即可。2. (2004安徽省12分)正方形通過剪切可以拼成三角形方法如下:仿上用圖示的方法,解答下列問題:操作設計: (1)如下圖,對直角三角形,設計一種方案,將它分成若干塊,再拼成一個與原三角形等面

14、積的矩形(2)如下圖,對任意三角形,設計一種方案,將它分成若干塊再拼成一個與原三角形等面積的矩形【答案】解:(1)作圖如下: (2)作圖如下:3. (2005安徽省課標12分)下圖中,圖(1)是一個扇形AOB,將其作如下劃分: 第一次劃分:如圖(2)所示,以OA的一半為半徑畫弧,再作的平分線,得到扇形的總數為6個,分別為:扇形AOB、扇形AOC、扇形COB、扇形、扇形、扇形; 第二次劃分:如圖3所示,在扇形中,按上述劃分方式繼續劃分,可以得到扇形的總數為11個; 第三次劃分:如圖4所示; 依次劃分下去。 (1)根據題意,完成下表: (2)根據上表,請你判斷按上述劃分方式,能否得到扇形的總數為2

15、005個?為什么?【答案】解:(1)從上至下依次填16,21,5n+1。(2)不能夠得到2005個扇形,因為滿足5n+1=2005的正整數n不存在。【考點】分類歸納(圖形的變化類)。【分析】(1)第一次劃分后的扇形的總個數為:1+5=6;第二次劃分后的扇形的總個數為:1+2×5=11;第3次劃分后的扇形的總個數為:1+3×5=16;第n次劃分后的扇形的總個數為:1+5n。(2)讓1+5n=2005,看是否有整數n即可。4. (2005安徽省課標12分) 圖1是一個格點正方形組成的網格。ABC是格點三角形(頂點在網格交點處),請你完成下面的兩個問題: (1)在圖1中畫出與AB

16、C相似的格點和,且與ABC的相似比是2,與ABC的相似比是;圖1 (2)在圖2中用與ABC、A1B1C1、A2B2C2全等的格點三角形(每個三角形至少使用一次),拼出一個你熟悉的圖案,并為你設計的圖案配一句貼切的解說詞。圖2【答案】解:(1)畫圖如下: (2)拼圖如下: 解說詞:臺燈。(答案不唯一)。【考點】網格問題,作圖(相似變換)。【分析】(1)A1B1C1與ABC的相似比是2,則讓ABC的各邊都擴大2倍就可A2B2C2與ABC的相似比是;ABC的直角邊是2,所以A2B2C2與的直角邊是 ,即一個對角線的長度,斜邊為2依此畫圖即可。(2)拼圖有審美意義即可(答案不唯一)。5. (2006安

17、徽省大綱13分)取一副三角板按圖拼接,固定三角板ADC,將三角板ABC繞點A依順時針方向旋轉一個大小為的角(0°45°)得到ABC,如圖所示試問:(1)當為多少度時,能使得圖中ABDC;(2)當旋轉至圖位置,此時又為多少度圖中你能找出哪幾對相似三角形,并求其中一對的相似比;(3)連接BD,當0°45°時,探尋DBC+CAC+BDC值的大小變化情況,并給出你的證明。【答案】解:(1)如圖,由題意CAC'=,要使ABDC,須BAC=ACD,BAC=30°。=CAC'=BAC'BAC=45°30°=15&#

18、176;。=15°時,能使得ABDC。(2)易得=45°時,可得圖。此時,若記DC與AC',BC'分別交于點E,F,則共有兩對相似三角形:BFCADC,C'FEADE。下求BFC與ADC的相似比:在圖中,設AB=a,則易得AC=a。BC=(1)a,BC:AC=(1)a:a=1:(2+)=(2):2。(3)當0°45°時,DBC+CAC+BDC值的大小不變,為1050。證明如下:當0°45°時,總有EFC'存在。EFC'=BDC+DBC',CAC'=,FEC'=C+。又EF

19、C'+FEC'+C'=180°,BDC+DBC'+C+C'=180°。又C'=45°,C=30°,DBC'+CAC'+BDC=105°。【考點】旋轉的性質,平行的判定,相似三角形的判定,勾股定理,三角形內角和外角定理。【分析】(1)由平行的判定定理和三角形的外角性質可得。 (2)由相似三角形的判定可得BFCADC,C'FEADE。另:C'FE與ADE的相似比為:在圖中,設AD=b,則易得AC=AC'=b, AB=BC'=,BC=ACAB=,BF=,。

20、(3)由旋轉的性質、三角形內角和外角定理即可求。另解:在圖中,BD分別交AC,AC'于點M,N,由于在AMN中,CAC'=,AMN+CAC'+ANM=180°,BDC+C+DBC'+C'=180°。BDC+30°+DBC'+45°=180°。BDC+DBC'=105°。在圖中,=CAC'=45°,易得DBC'+BDC=60°。也有DBC'+CAC'+BDC=105°。綜上,當0°a45°時,總有DB

21、C'+CAC'+BDC=105°。6. (2009安徽省10分)如圖,將正方形沿圖中虛線(其中xy)剪成四塊圖形,用這四塊圖形恰能拼成一個矩形(非正方形)(1)畫出拼成的矩形的簡圖;(2)求的值【答案】解:(1)畫圖如下:(2)由拼圖前后的面積相等得:,即。 y0,等式兩邊同除以y2得:。解得:(負值不合題意,舍去)。【考點】作圖(應用與設計作圖)。【分析】(1)已知中的和,和形狀大小分別完全相同,結合圖中數據可知能拼成一個直角三角形,能拼成一個直角三角形,并且這兩個直角三角形形狀大小相同,利用這兩個直角三角形即可拼成矩形。(2)利用拼圖前后的面積相等,可得:,整理即可得到答案。7. (2011安徽省12分)在ABC中,ACB90°,ABC30°,將ABC繞頂點C順時針旋轉,旋轉角為(0°180°),得到A1B1C(1)如圖1,當A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論