人教版八年級上冊數(shù)學(xué)知識點(diǎn)_第1頁
人教版八年級上冊數(shù)學(xué)知識點(diǎn)_第2頁
人教版八年級上冊數(shù)學(xué)知識點(diǎn)_第3頁
人教版八年級上冊數(shù)學(xué)知識點(diǎn)_第4頁
人教版八年級上冊數(shù)學(xué)知識點(diǎn)_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第十一章全等三角形1.全等三角形的性質(zhì):全等三角形對應(yīng)邊相等、對應(yīng)角相等。2.全等三角形的判定:三邊相等(SSS、兩邊和它們的夾角相等(SAS、兩角和它們的夾邊(ASA、兩角和其中一角的對邊對應(yīng)相等(AAS、斜邊和直角邊相等的兩直角三角形(HL。3.角平分線的性質(zhì):角平分線平分這個角,角平分線上的點(diǎn)到角兩邊的距離相等4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系,、回顧三角形判定,搞清我們還需要什么,、正確地

2、書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題.第十二章軸對稱1.如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。2.軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。3.角平分線上的點(diǎn)到角兩邊距離相等。4.線段垂直平分線上的任意一點(diǎn)到線段兩個端點(diǎn)的距離相等。5.與一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。6.軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。7.畫一圖形關(guān)于某條直線的軸對稱圖形的步驟:找到關(guān)鍵點(diǎn),畫出關(guān)鍵點(diǎn)的對應(yīng)點(diǎn),按照原圖順序依次連接各點(diǎn)。8.點(diǎn)(x,y關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為(x,-y點(diǎn)(x,y關(guān)于

3、y軸對稱的點(diǎn)的坐標(biāo)為(-x,y點(diǎn)(x,y關(guān)于原點(diǎn)軸對稱的點(diǎn)的坐標(biāo)為(-x,-y9.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。10.等腰三角形的判定:等角對等邊。11.等邊三角形的三個內(nèi)角相等,等于60°,12.等邊三角形的判定:三條邊都相等的三角形是等邊三角形三個角都相等的三角形是等腰三角形。有一個角是60°的等腰三角形是等邊三角形(重要事實(shí)(不是書上定理;有兩個角是60°的三角形是等邊三角形。13.直角三角形中,30°角所對的直角邊等于斜邊的一半。14.直角三角

4、形斜邊上的中線等于斜邊的一半第十三章實(shí)數(shù)算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a0時,a才有算術(shù)平方根。平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。正數(shù)有兩個平方根(一正一負(fù)它們互為相反數(shù);0只有一個平方根,就是它本身;負(fù)數(shù)沒有平方根。正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。數(shù)a的相反數(shù)是-a,一個正實(shí)數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0第十四章一次函數(shù)1.畫函數(shù)圖象的一般步驟:一、列表(一次函數(shù)只用列出兩個點(diǎn)即可,其

5、他函數(shù)一般需要列出5個以上的點(diǎn),所列點(diǎn)是自變量與其對應(yīng)的函數(shù)值,二、描點(diǎn)(在直角坐標(biāo)系中,以自變量的值為橫坐標(biāo),相應(yīng)函數(shù)的值為縱坐標(biāo),描出表格中的個點(diǎn),一般畫一次函數(shù)只用兩點(diǎn),三、連線(依次用平滑曲線連接各點(diǎn)。2.根據(jù)題意寫出函數(shù)解析式:關(guān)鍵找到函數(shù)與自變量之間的等量關(guān)系,列出等式,既函數(shù)解析式。3.若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k0的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量。特別地,當(dāng)b=0時,稱y是x的正比例函數(shù)。4.正比列函數(shù)一般式:y=kx(k0,其圖象是經(jīng)過原點(diǎn)(0,0的一條直線。5.正比列函數(shù)y=kx(k0的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時,

6、直線y=kx經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b 中: 當(dāng)k>0時,y隨x的增大而增大; 當(dāng)k<0時,y隨x的增大而減小。6.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式(待定系數(shù)法求函數(shù)解析式:把兩點(diǎn)帶入函數(shù)一般式列出方程組求出待定系數(shù)把待定系數(shù)值再帶入函數(shù)一般式,得到函數(shù)解析式7.會從函數(shù)圖象上找到一元一次方程的解(既與x軸的交點(diǎn)坐標(biāo)橫坐標(biāo)值,一元一次不等式的解集,二元一次方程組的解(既兩函數(shù)直線交點(diǎn)坐標(biāo)值第十五章整式的乘除與因式分解(以下如a3代表a的3次方1.同底數(shù)冪的乘法同底數(shù)冪的乘法法則: (m,n

7、都是正數(shù)是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;指數(shù)是1時,不要誤以為沒有指數(shù);不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為正數(shù);公式還可以逆用:(m、n均為正整數(shù)2.冪的乘方與積的乘方1. 冪的乘方法則:(m,n都是正數(shù)是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆.2. 底數(shù)有負(fù)號時,運(yùn)算時要注意,底數(shù)是a與(-a時不是

8、同底,但可以利用乘方法則化成同底,如將(-a 3化成-a33.底數(shù)有時形式不同,但可以化成相同。4.要注意區(qū)別(abn與(a+bn意義是不同的,不要誤以為(a+bn=an+bn(a、b均不為零。5.積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(n為正整數(shù)。6.冪的乘方與積乘方法則均可逆向運(yùn)用。3. 整式的乘法(1. 單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個因式。單項(xiàng)式乘法法則在運(yùn)用時要注意以下幾點(diǎn):積的系數(shù)等于各因式系數(shù)積,先確定符號,再計(jì)算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相

9、加混淆;相同字母相乘,運(yùn)用同底數(shù)的乘法法則;只在一個單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個因式;單項(xiàng)式乘法法則對于三個以上的單項(xiàng)式相乘同樣適用;單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個單項(xiàng)式。(2.單項(xiàng)式與多項(xiàng)式相乘單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。單項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):單項(xiàng)式與多項(xiàng)式相乘,積是一個多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;運(yùn)算時要注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號;在混合運(yùn)算時,要注意運(yùn)算順序。(3.多項(xiàng)式與多項(xiàng)式相乘多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式

10、中的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng),再把所得的積相加。多項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個多項(xiàng)式項(xiàng)數(shù)的積;多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);對含有同一個字母的一次項(xiàng)系數(shù)是1的兩個一次二項(xiàng)式相乘,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個因式中常數(shù)項(xiàng)的積。對于一次項(xiàng)系數(shù)不為1的兩個一次二項(xiàng)式(mx+a和(nx+b相乘可以得4.平方差公式平方差公式:兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,其結(jié)構(gòu)特征是:公式左邊是兩個二項(xiàng)式相乘,兩個二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);公式右邊是兩項(xiàng)的平方

11、差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。5.完全平方公式完全平方公式:兩數(shù)和(或差的平方,等于它們的平方和,加上(或減去它們的積的2倍,口決:首平方,尾平方,2倍乘積在中央;2.結(jié)構(gòu)特征:公式左邊是二項(xiàng)式的完全平方;公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。3.在運(yùn)用完全平方公式時,要注意公式右邊中間項(xiàng)的符號,以及避免出現(xiàn)這樣的錯誤。添括號法則:添正不變號,添負(fù)各項(xiàng)變號,去括號法則同樣6. 同底數(shù)冪的除法1. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a0,m、n都是正數(shù),且m>n.2. 在應(yīng)用時需要注意以下幾點(diǎn):法則使用的前提條件是“同底數(shù)冪

12、相除”而且0不能做除數(shù),所以法則中a0.任何不等于0的數(shù)的0次冪等于1,即,如,(-2.50=1,則00無意義.任何不等于0的數(shù)的-p次冪(p是正整數(shù),等于這個數(shù)的p的次冪的倒數(shù),即( a0,p是正整數(shù), 而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的; 當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如,運(yùn)算要注意運(yùn)算順序.7.整式的除法1.單項(xiàng)式除法單項(xiàng)式單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;2.多項(xiàng)式除以單項(xiàng)式多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多

13、項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。8. 分解因式1. 把一個多項(xiàng)式化成幾個整式的積的形式,這種變形叫做把這個多項(xiàng)式分解因式.2. 因式分解與整式乘法是互逆關(guān)系.因式分解與整式乘法的區(qū)別和聯(lián)系:(1整式乘法是把幾個整式相乘,化為一個多項(xiàng)式;(2因式分解是把一個多項(xiàng)式化為幾個因式相乘.分解因式的一般方法:1. 提公共因式法1. 如果一個多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個公因式提出來,從而將多項(xiàng)式化成兩個因式乘積的形式.這種分解因式的方法叫做提公因式法.2. 概念內(nèi)涵:(1因式分解的最后結(jié)果應(yīng)當(dāng)是“積”;(2公因式可能是單項(xiàng)式,也可能

14、是多項(xiàng)式;(3提公因式法的理論依據(jù)是乘法對加法的分配律,即:3. 易錯點(diǎn)點(diǎn)評:(1注意項(xiàng)的符號與冪指數(shù)是否搞錯;(2公因式是否提“干凈”;(3多項(xiàng)式中某一項(xiàng)恰為公因式,提出后,括號中這一項(xiàng)為+1,不漏掉.2. 運(yùn)用公式法1. 如果把乘法公式反過來,就可以用來把某些多項(xiàng)式分解因式.這種分解因式的方法叫做運(yùn)用公式法.2. 主要公式:(1平方差公式:(2完全平方公式:3. 易錯點(diǎn)點(diǎn)評:因式分解要分解到底.如就沒有分解到底.4. 運(yùn)用公式法:(1平方差公式:應(yīng)是二項(xiàng)式或視作二項(xiàng)式的多項(xiàng)式;二項(xiàng)式的每項(xiàng)(不含符號都是一個單項(xiàng)式(或多項(xiàng)式的平方;二項(xiàng)是異號.(2完全平方公式:應(yīng)是三項(xiàng)式;其中兩項(xiàng)同號,且各

15、為一整式的平方;還有一項(xiàng)可正負(fù),且它是前兩項(xiàng)冪的底數(shù)乘積的2倍.3. 因式分解的思路與解題步驟:(1先看各項(xiàng)有沒有公因式,若有,則先提取公因式;(2再看能否使用公式法;(3用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目的;(4因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;(5因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.注意:以下內(nèi)容課本不作要求4.分組分解法:1. 分組分解法:利用分組來分解因式的方法叫做分組分解法.2. 概念內(nèi)涵:分組分解法的關(guān)鍵是如何分組,要嘗試通過分組后是否有公因式可提,并且可繼續(xù)分解,分組后是否可利用公式法繼續(xù)分解因式.3. 注意: 分組時要注意符號的變化.5. 十字相乘法:1.對于二次三項(xiàng)式,將a和c分別分解成兩個因數(shù)的乘積,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論