試驗3插值與數值積分_第1頁
試驗3插值與數值積分_第2頁
試驗3插值與數值積分_第3頁
試驗3插值與數值積分_第4頁
試驗3插值與數值積分_第5頁
已閱讀5頁,還剩8頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、實驗3插值與數值積分化工系 分0班2010011805 張亞清【實驗目的】1、掌握用MATLAB十算拉格朗日、分段線性、三次樣條三種插值的方法,改變節點的數目,對三種插值結果進行初步分析。2、掌握用MATLA吸梯形公式、辛普森公式計算數值積分。3、通過實例學習用插值和數值積分解決實際問題。【實驗內容】1、題目1 (3)選擇一些函數,在 n個節點上(n不要太大,如511)用拉格朗日、分段線性、三次樣條三種插值方法,計算 m個插值點的函數值(m要適中,如50100)。通過數值和圖形輸出,將三種插值結果與精確值進行比較。適當增加n,再作比較,由此作初步分析。10(3) y= cos x , -2 &

2、lt;x<2.【問題分析】由于對稱性,只分析函數在 x正半軸的情況即可。取 9個節點,即以-2為首項,公 差為0.8的等差數列。所求插值點設為81個,即以-2為首項,公差為0.05的等差數列。【問題解答】 程序如下:x0=-2:0.8:2;y0=cos(xG).A1G;x=-2:0.05:2;y=cos(x).A10;y1=lagr(x0,y0,x);y2=interp1(x0,y0,x);y3=spline(x0,y0,x);for k=1:21xx(k)=x(39+2*k);yy(k)=y(39+2*k);yy1(k)=y(39+2*k);yy2(k)=y2(39+2*k);yy3(

3、k)=y3(39+2*k);endA=xx;yy;yy2;yy3'z=0*x;plot(x,z, 'k:' ,x,y, 'k-',x,y1, 'm' ,x,y2, 'r' ,x,y3, 'b')title('圖1.三種插值方法的對比');gtext('原函數')gtext(拉格朗日插值);gtext('分段線性插值');gtext('三次樣條插值);(1) 當節點數為6,插值點數為81時,輸出的計算結果如表1,其中y=cos10x , y1 ,y2,

4、y3依次是拉格朗日、分段線性、三次樣條插值,與精確值y相比,顯然他們在節點處相等。X在0,0.6的范圍內,三種方法的偏差都很大,在0.7 , 1,2的范圍內,三種方法得到的插值結果很接近,但和原函數還是有一定偏差,在 1,2,2的范圍內,分段線性插值的結果和原函數吻合的最好,三次樣條插值和 拉格朗日插值都出現了龍格現象。由于原函數是偶函數,所以在負數范圍內結 論一樣。表1xyy1y2y301.00000.51490.43940.51630.10000.95110.51010.43940.51150.20000.81760.49560.43940.49710.30000.63320.47190.

5、43940.47310.40000.43940.43940.43940.43940.50000.27090.39900.38450.39650.60000.14670.35150.32960.34610.70000.06850.29810.27470.29010.80000.02690.24030.21970.23070.90000.00860.17970.16480.17001.00000.00210.11800.10990.10991.10000.00040.05740.05500.05261.20000.00000.00000.00000.00001.30000.0000-0.05160

6、.0001-0.04561.40000.0000-0.09480.0001-0.08231.50000.0000-0.12670.0001-0.10811.60000.0000-0.14410.0001-0.12081.70000.0000-0.14380.0001-0.11831.80000.0000-0.12220.0001-0.09881.90000.0000-0.07550.0001-0.05992.00000.00020.00020.00020.0002圖1.三種插值方法的對比a fiJ51.5從圖1中看出,-0.6,0.6范圍內,分段線性插值法得到的曲線水平,與原函數差異很大,這是

7、由于分段插值法兩節點之間的數治愈兩節點的值有關,缺失了中間的信息造成的。(2)當節點數增加為9,插值點數仍為81時,輸出的計算結果如下:表2xyy1y2y301.00001.00001.00001.00000.10000.95110.96080.85420.94800.20000.81760.84880.70840.81480.30000.63320.67970.56260.63470.40000.43940.47740.41680.44200.50000.27090.27090.27090.27090.60000.14670.09030.21720.14840.70000.0685-0.03

8、810.16340.07110.80000.0269-0.09640.10960.02810.90000.0086-0.07940.05590.00871.00000.00210.00210.00210.00211.10000.00040.12050.0017-0.00081.20000.00000.23210.0013-0.00201.30000.00000.28300.0008-0.00211.40000.00000.21870.0004-0.00131.50000.00000.00000.00000.00001.60000.0000-0.37350.00000.00141.70000.0

9、000-0.83180.00010.00241.80000.0000-1.19300.00010.00281.90000.0000-1.10920.00010.00222.00000.00020.00020.00020.0002圖1.三種插值方法的對比-2-1.5 J -0.50D,511.52由圖可見,三次樣條插值的圖形幾乎與原函數完全重合,分段線性插值的結果比上一次更接近原函數,拉格朗日插值在-0.5,0.5范圍內與原函數結果接近,在 1,5,2范圍內,出現了龍格現象,插入點數值偏離了原函數的值,與情況(1)相比,偏離更大。(3)當適當增加節點數,使得節點數目達到41個,插值點個數應相應增

10、加為 200個時,由于節點增多,所以這種情況三種方法得到的結果都與原函數很接近,三種方法得到的曲線幾乎都與原函數重合,如下圖:由此可見,當增加節點個數時,插值函數均更加逼近原函數。2、題目10下表給出的x, y數據位于機翼剖面的輪廓線上,y1和y2分別對應輪廓的上下線。 假設需要得到x坐標每改變0.1時的y坐標。試完成加工所需數據,畫出曲線,求機翼剖面 的面積。x035791112131415y101.82.22.73.03.12.92.52.01.6y201.21.72.02.12.01.81.21.01.6【問題分析】給定的數據點是有限的,要想確定更多的數據,就要運用插值方法。而加工斷面的

11、面積,則應通過數值積分分別求出上下輪廓線對x軸圍城的面積,然后做差求得。【問題解答】運用插值方法,程序如下:漁目中給的節點數據x=0,3:2:11,12:15;y1=0,1.8,2.2,2.7,3.0,3.1,2.9,2.5,2.0,1.6;y2=0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6;u=0:0.1:15;L1=lagr(x,y1,u);L2=lagr(x,y2,u);I1=interp1(x,y1,u);I2=interp1(x,y2,u);S1=spline(x,y1,u);S2=spline(x,y2,u);subplot(1,3,1),plot(u

12、,L1,'m',u,L2,'m')title(' 圖1.拉格朗日插值);subplot(1,3,2),plot(u,I1,'r',u,I2,'r')title('圖2.分段線性插值');subplot(1,3,3),plot(u,S1,'b',u,S2,'b')title('圖3.三次樣條插值');%弟形求積公式z1=trapz(u,S1);z2=trapz(u,S2);z=z1-z2普森求積公式k=length(S1);S11=S1(2:2:k-1);s1=

13、sum(S11);S12=S1(3:2:k-1);s2=sum(S12);zz1=(S1(1)+S1(k)+4*s1+2*s2)*0.1/3;l=length(S2);S21=S2(2:2:l-1);ss1=sum(S21);S22=S2(3:2:l-1);ss2=sum(S22); zz2=(S2(1)+S2(l)+4*ss1+2*ss2)*0.1/3; zz=zz1-zz211.3444 ,用辛普森公式得到加工剖繪圖得到如下三幅圖,可以看出拉格朗日插值法得出的圖形與實際不符,不予考慮。 次樣條插值法得到的圖形比分段線性插值法得到的曲線更光滑。A=u;I1;I2;S1;S2'xY1(

14、分段)Y2 (分段)Y1 (樣條)Y2 (樣條)0.00000.00000.00000.00000.00000.10000.06000.04000.10890.04990.20000.12000.08000.21340.09900.30000.18000.12000.31370.14740.40000.24000.16000.40970.19510.50000.30000.20000.50180.24210.60000.36000.24000.58980.28840.70000.42000.28000.67400.33400.80000.48000.32000.75450.37880.9000

15、0.54000.36000.83140.4230用matlab計算,梯形求積公式得到加工剖面面積為 面面積為11.3460 ,兩種方法得到的結果近似。插值后得到的加工數據如下表:1.00000.60000.40000.90470.46651.10000.66000.44000.97470.50941.20000.72000.48001.04130.55151.30000.78000.52001.10470.59301.40000.84000.56001.16510.63381.50000.90000.60001.22250.67391.60000.96000.64001.27700.71341

16、.70001.02000.68001.32870.75231.80001.08000.72001.37780.79041.90001.14000.76001.42440.82802.00001.20000.80001.46850.86492.10001.26000.84001.51040.90122.20001.32000.88001.54990.93682.30001.38000.92001.58740.97192.40001.44000.96001.62291.00632.50001.50001.00001.65651.04012.60001.56001.04001.68841.07322

17、.70001.62001.08001.71851.10582.80001.68001.12001.74711.13782.90001.74001.16001.77421.16923.00001.80001.20001.80001.20003.10001.82001.22501.82451.23023.20001.84001.25001.84801.25993.30001.86001.27501.87041.28893.40001.88001.30001.89181.31743.50001.90001.32501.91251.34543.60001.92001.35001.93251.37273

18、.70001.94001.37501.95191.39953.80001.96001.40001.97081.42583.90001.98001.42501.98941.45154.00002.00001.45002.00761.47674.10002.02001.47502.02581.50144.20002.04001.50002.04391.52554.30002.06001.52502.06201.54914.40002.08001.55002.08031.57224.50002.10001.57502.09891.59474.60002.12001.60002.11791.61684

19、.70002.14001.62502.13741.63834.80002.16001.65002.15751.65944.90002.18001.67502.17841.67995.00002.20001.70002.20001.70005.10002.22501.71502.22251.71965.20002.25001.73002.24591.73875.30002.27501.74502.27001.75735.40002.30001.76002.29481.77545.50002.32501.77502.32011.79305.60002.35001.79002.34591.81025

20、.70002.37501.80502.37201.82695.80002.40001.82002.39841.84305.90002.42501.83502.42491.85886.00002.45001.85002.45151.87406.10002.47501.86502.47811.88876.20002.50001.88002.50451.90306.30002.52501.89502.53071.91686.40002.55001.91002.55661.93016.50002.57501.92502.58211.94306.60002.60001.94002.60711.95536

21、.70002.62501.95502.63151.96726.80002.65001.97002.65521.97866.90002.67501.98502.67801.98957.00002.70002.00002.70002.00007.10002.71502.00502.72102.01007.20002.73002.01002.74112.01957.30002.74502.01502.76022.02857.40002.76002.02002.77862.03707.50002.77502.02502.79612.04507.60002.79002.03002.81302.05257

22、.70002.80502.03502.82912.05957.80002.82002.04002.84462.06607.90002.83502.04502.85952.07198.00002.85002.05002.87392.07738.10002.86502.05502.88782.08228.20002.88002.06002.90132.08658.30002.89502.06502.91442.09028.40002.91002.07002.92722.09338.50002.92502.07502.93972.09598.60002.94002.08002.95202.09798

23、.70002.95502.08502.96412.09948.80002.97002.09002.97612.10028.90002.98502.09502.98812.10049.00003.00002.10003.00002.10009.10003.00502.09503.01192.09909.20003.01002.09003.02382.09749.30003.01502.08503.03552.09529.40003.02002.08003.04692.09259.50003.02502.07503.05782.08939.60003.03002.07003.06832.08579

24、.70003.03502.06503.07822.08159.80003.04002.06003.08732.07709.90003.04502.05503.09562.072110.00003.05002.05003.10292.066810.10003.05502.04503.10922.061110.20003.06002.04003.11432.055210.30003.06502.03503.11812.049010.40003.07002.03003.12062.042510.50003.07502.02503.12152.035810.60003.08002.02003.1209

25、2.028910.70003.08502.01503.11852.021910.80003.09002.01003.11432.014710.90003.09502.00503.10822.007411.00003.10002.00003.10002.000011.10003.08001.98003.08971.992411.20003.06001.96003.07721.984111.30003.04001.94003.06261.974211.40003.02001.92003.04591.962111.50003.00001.90003.02691.946911.60002.98001.

26、88003.00591.928011.70002.96001.86002.98261.904611.80002.94001.84002.95731.875911.90002.92001.82002.92971.841312.00002.90001.80002.90001.800012.10002.86001.74002.86821.751612.20002.82001.68002.83421.697012.30002.78001.62002.79841.637712.40002.74001.56002.76061.574912.50002.70001.50002.72111.509912.60

27、002.66001.44002.67981.444212.70002.62001.38002.63701.379012.80002.58001.32002.59271.315712.90002.54001.26002.54701.255613.00002.50001.20002.50001.200013.10002.45001.18002.45181.150113.20002.40001.16002.40261.106313.30002.35001.14002.35271.068713.40002.30001.12002.30211.037713.50002.25001.10002.25131

28、.013413.60002.20001.08002.20040.996013.70002.15001.06002.14960.985713.80002.10001.04002.09910.982813.90002.05001.02002.04910.987514.00002.00001.00002.00001.000014.10001.96001.06001.95191.020514.20001.92001.12001.90491.049214.30001.88001.18001.85941.086314.40001.84001.24001.81561.132014.50001.80001.3

29、0001.77371.186614.60001.76001.36001.73391.250314.70001.72001.42001.69631.323314.80001.68001.48001.66141.405714.90001.64001.54001.62921.497915.00001.60001.60001.60001.60003、題目12在橋梁的一端每隔一段時間記錄1min有幾輛車過橋,得到下表的過橋車輛數量:時間車輛數/輛時間車輛數/輛時間車輛數/輛0:0029:001218:00222:00210:30519:00104:00011:301020:0095:00212:3012

30、21:00116:00514:00722:0087:00816:00923:0098:002517:002824:003試估計一天通過橋梁的車流量。【問題分析】講一天的1440分鐘逐一表示為x0,x 1,x 1440.與每個xi對應的yi表示從第i分鐘到第 i+1分鐘的車輛數。通過三種不同的插值方法得到各個插值點(令插值點為所有的 xi),再辛普森公式求積即可。【問題解答】1、三次樣條插值法程序如下:砧中數據t=0 2 4:9 10.5 11.5 12.5 14 16:24;car=2 2 0 2 5 8 25 12 5 10 12 7 9 28 22 10 9 11 8 9 3;x=0:1/60:24;獷次樣條插值法q=spline(t,car,x);plot(x,q,'r')gtext('時間-流量圖)xlabel(' 時間/h'),ylabel('流量/輛')求一天的流量,輸入: S=60*trapz(x,q)得到結果:S=1.2668e+0042、分段線性插值法程序如下:砧中數據t=0 2 4:9 10.5 11.5 12.5 14

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論