第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)76282_第1頁(yè)
第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)76282_第2頁(yè)
第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)76282_第3頁(yè)
第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)76282_第4頁(yè)
第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)76282_第5頁(yè)
已閱讀5頁(yè),還剩3頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué)第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)第十節(jié)閉區(qū)間上連續(xù)函數(shù)的性質(zhì)一一、最值定理、最值定理二、介值定理二、介值定理長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué)注意注意: 若函數(shù)在開(kāi)區(qū)間上連續(xù),結(jié)論不一定成立 .一、最值定理一、最值定理定理定理1.在閉區(qū)間上連續(xù)的函數(shù)即: 設(shè), ,)(bacxfxoyab)(xfy 12則, ,21ba使)(min)(1xffbxa)(max)(2xffbxa值和最小值.或在閉區(qū)間內(nèi)有間斷 在該區(qū)間上一定有最大(證明略)點(diǎn) ,長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué)例如例如,)1,0(,xxy無(wú)最大值和最小值 xoy1121,31,110,1)(xxxxxxfxoy1122也無(wú)最大值和最小

2、值 又如又如, 長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué),)(baxf在因此bxoya)(xfy 12mm推論推論. 由定理 1 可知有, )(max,xfmbax)(min,xfmbax, ,bax故證證: 設(shè), ,)(bacxf,)(mxfm有上有界 .二、介值定理二、介值定理定理定理2. ( 零點(diǎn)定理 ), ,)(bacxf至少有一點(diǎn), ),(ba且使xyoab)(xfy .0)(f0)()(bfaf( 證明略 )在閉區(qū)間上連續(xù)的函數(shù)在該區(qū)間上有界. 長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué)定理定理3. ( 介值定理 ) 設(shè) , ,)(bacxf且,)(aaf,)(babbf則對(duì) a 與 b 之間的任一數(shù) c ,一點(diǎn), )

3、,(ba證證: 作輔助函數(shù)cxfx)()(則,)(bacx 且)()(ba)(cbca0故由零點(diǎn)定理知, 至少有一點(diǎn), ),(ba使,0)(即.)(cf推論推論:abxoya)(xfy bc使.)(cf至少有在閉區(qū)間上的連續(xù)函數(shù) 必取得介于最小值與最大值之間的任何值 .長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué)例例1. 證明方程01423 xx一個(gè)根 .證證: 顯然, 1 ,014)(23cxxxf又,01)0(f02) 1 (f故據(jù)零點(diǎn)定理, 至少存在一點(diǎn), ) 1 ,0(使,0)(f即01423說(shuō)明說(shuō)明:,21x,0)(8121f內(nèi)必有方程的根 ;) 1 ,(21取 1 ,21的中點(diǎn),43x,0)(43f內(nèi)必

4、有方程的根 ;),(4321可用此法求近似根.二分法二分法4321x01在區(qū)間)1 ,0(的中點(diǎn)取1 ,0內(nèi)至少有則則長(zhǎng)春工業(yè)大學(xué) 高等數(shù)學(xué)0)()()(212xfxff上連續(xù) , 且恒為正 ,例例2. 設(shè))(xf在,ba對(duì)任意的, ),(,2121xxbaxx必存在一點(diǎn)證證:, ,21xx使. )()()(21xfxff令)()()()(212xfxfxfxf, 則,)(bacxf)()(21xfxf)()()(2112xfxfxf)()()(2122xfxfxf)()(21xfxf221)()(xfxf0使,)()(21時(shí)當(dāng)xfxf,0)(xf,0)()(21xfxf故由零點(diǎn)定理知 , 存在, ),(21xx,0)(f即. )()()(21xfxff當(dāng))()(21xfxf

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論