




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、存檔日期: 存檔編號: 本科生畢業(yè)論文(設(shè)計)論 文 題 目: 空間直角坐標(biāo)系統(tǒng)轉(zhuǎn)換及程序設(shè)計 姓 名: 學(xué) 號: 院 系: 專 業(yè): 測繪工程 摘 要隨著空間技術(shù)的發(fā)展,全球一體化的形成,越來越多的要求全球測繪資料形成統(tǒng)一規(guī)范,尤其是坐標(biāo)系統(tǒng)的統(tǒng)一。由于各測量單位工作目的不同,所選擇的橢球參考系也會有所不同,出現(xiàn)了許多不同形式的坐標(biāo)系,例如wgs-84坐標(biāo)系、國家80坐標(biāo)系、北京54坐標(biāo)系、獨立地方坐標(biāo)及各種坐標(biāo)。在同一坐標(biāo)系下坐標(biāo)的表示方式又有空間直角坐標(biāo)、大地坐標(biāo)、平面坐標(biāo)。根據(jù)不同的測繪需求,需要將不同的坐標(biāo)系下的坐標(biāo)進(jìn)行相互轉(zhuǎn)換,在這些坐標(biāo)轉(zhuǎn)換的過程中既會運用到同一坐標(biāo)系下的坐標(biāo)轉(zhuǎn)換
2、模型,又會用到不同參考系下各坐標(biāo)系間的坐標(biāo)轉(zhuǎn)換模型。 首先本文介紹大地測量學(xué)坐標(biāo)的相關(guān)知識,接著介紹了與坐標(biāo)轉(zhuǎn)換相關(guān)的知識以及坐標(biāo)轉(zhuǎn)換模型(包括同一坐標(biāo)系下的坐標(biāo)轉(zhuǎn)換模型和不同參考系下各坐標(biāo)系間的坐標(biāo)轉(zhuǎn)換模型),并利用vb語言實現(xiàn)坐標(biāo)轉(zhuǎn)換的過程。關(guān)鍵詞:地球橢球,坐標(biāo)系,轉(zhuǎn)換模型,坐標(biāo)轉(zhuǎn)換abstractalong with the development of space technology, the formation of global integration, more and more requirements of surveying and mapping material f
3、orm a unified global standard, especially the unity of the coordinate system. because each measurement unit work purpose is different, choose the frame of reference ellipsoid would differ, the emergence of many different forms of coordinate system, such as wgs-84 coordinate system, the state 80 coor
4、dinate system, beijing 54 coordinate system, independent local coordinate system and various kinds of urban construction coordinates. in the same coordinate system of representation and coordinate space right-angle coordinate, coordinate, coordinate the earth plane. according to the different needs
5、of surveying and mapping, need different coordinate transformation coordinate system, in which the process of coordinate transformation can use to the same coordinate system coordinate transformation model, and will use different reference frame, the coordinate transformation between the coordinate
6、system model.first of all this paper introduces the geodetic coordinates of relevant knowledge, then introduce the knowledge of coordinate transformation and coordinate transformation model(including the same coordinate system coordinate transformation model and different reference frame, the coordi
7、nate transformation between the coordinate system model), and the use of vb language realization of coordinate transformation process.key words: the earth ellipsoid, coordinate system, transformation model, coordinate transformation摘要iabstractii1 緒 論11.1研究的背景和意義11.2國內(nèi)外研究現(xiàn)狀11.3研究的主要內(nèi)容22 相關(guān)理論和知識介紹32.1
8、地球橢球32.2 基準(zhǔn)42.3建立大地坐標(biāo)系的基本原理52.3.1橢球定位、定向的概念52.3.2參考橢球定位與定向的實現(xiàn)方法52.3.3多點定位63 坐標(biāo)系統(tǒng)簡介73.1測量常用的坐標(biāo)系73.1.1大地坐標(biāo)系73.1.2空間直角坐標(biāo)系83.1.3平面坐標(biāo)系83.1.4地方獨立坐標(biāo)系93.2 我國常用的坐標(biāo)系統(tǒng)93.2.1 1954年北京坐標(biāo)系103.2.2 1980年國家大地坐標(biāo)系113.2.3 1954年北京坐標(biāo)系(整體平差轉(zhuǎn)換值)113.2.4 wgs-84世界大地坐標(biāo)系123.2.5 2000國家大地坐標(biāo)系124 坐標(biāo)轉(zhuǎn)換理論與程序設(shè)計144.1坐標(biāo)轉(zhuǎn)換的基本概念144.2坐標(biāo)系轉(zhuǎn)換的
9、模型144.2.1同一參考橢球下大地坐標(biāo)系與空間直角坐標(biāo)系的相互轉(zhuǎn)換144.3基準(zhǔn)轉(zhuǎn)換的模型214.3.1不同地球橢球坐標(biāo)系的空間三參數(shù)或七參數(shù)轉(zhuǎn)換215 全文總結(jié)26參考文獻(xiàn)27附 錄28致謝281 緒 論1.1研究的背景和意義隨著大地測量學(xué),衛(wèi)星大地測量學(xué),攝影測量學(xué)的發(fā)展和電子計算機(jī)的普及,對各種坐標(biāo)系的研究變得越來越重要了。精確地測量,計算和表示點的坐標(biāo),為各種比例尺地形圖和大型工程測量提供控制,大地坐標(biāo)系作為大地測量基準(zhǔn)的一部分,一直是大地測量中最基本的問題。按其原點相對地球質(zhì)心的位置,大地坐標(biāo)系可為局部坐標(biāo)系和地心坐標(biāo)系。過去由于科技水平的制約,人類不能精確地確定地心的位置,局部坐
10、標(biāo)系無疑是國家和地區(qū)的惟一選擇。應(yīng)用傳統(tǒng)技術(shù)建立起來的參心坐標(biāo)系逐漸難以滿足測繪及相關(guān)行業(yè)發(fā)展的需求,甚至在有些應(yīng)用中完全失去了意義。單純采用目前參心、二維、低精度、靜態(tài)的大地坐標(biāo)系統(tǒng)和相應(yīng)的基礎(chǔ)設(shè)施作為中國現(xiàn)行應(yīng)用的測繪基準(zhǔn),必然會帶來越來越多的不協(xié)調(diào)問題新形勢下,測量坐標(biāo)系問題顯得越來越突出,使用地心坐標(biāo)系的要求也越來越迫切。世界許多發(fā)達(dá)國家和地區(qū)都開始采用地心坐標(biāo)。信息時代的控制測量儀器和測量系統(tǒng)已形成數(shù)字化,智能化和集成化的新發(fā)展態(tài)勢,空間測量和地面測量儀器和測量系統(tǒng)出現(xiàn)互補(bǔ)共榮的新的發(fā)展格局;傳統(tǒng)的大地測量技術(shù)發(fā)生了質(zhì)的變化,傳統(tǒng)的測繪行業(yè)逐漸向地理信息化產(chǎn)業(yè)轉(zhuǎn)換,工作重點已經(jīng)由外業(yè)
11、轉(zhuǎn)為內(nèi)業(yè)處理。在實際測量中由于經(jīng)濟(jì)條件和環(huán)境條件的的限制,測量工作者在選取坐標(biāo)系的時候往往會正對實際情況選著最實用的坐標(biāo)系,這就對軟件提出了新的要求,需要數(shù)據(jù)處理的時候進(jìn)行轉(zhuǎn)換。由于各種轉(zhuǎn)換模型的相繼推出,對我們測量工作者來說,了解這些轉(zhuǎn)換的原理和數(shù)據(jù)的處理的過程方法是必要的。1.2國內(nèi)外研究現(xiàn)狀自60年代以來,各國大地測量學(xué)者,經(jīng)過大量研究,提出了多種坐標(biāo)轉(zhuǎn)換模型及多種解算方法, 北美1927基準(zhǔn)面(基于克拉克1966橢球體與北美1983基準(zhǔn)面(基于grs1980橢球體)之間坐標(biāo)轉(zhuǎn)換是根據(jù)研究區(qū)內(nèi)一系列已知點的大地坐標(biāo)或網(wǎng)格坐標(biāo)改正量進(jìn)行插值進(jìn)行的坐標(biāo)系轉(zhuǎn)換;英國采用北向與東向的雙線性網(wǎng)格插
12、值進(jìn)行坐標(biāo)轉(zhuǎn)換;挪威在海岸帶調(diào)查中,采用經(jīng)緯度多項式用于坐標(biāo)系轉(zhuǎn)換這種方法進(jìn)行新(ed87歐洲1987基準(zhǔn)面)、舊(ed50歐洲1950基準(zhǔn)面)坐標(biāo)系之間的轉(zhuǎn)換;歐洲石油勘探組織(epsg)對新、舊坐標(biāo)系采用“雙線性插值”進(jìn)行坐標(biāo)轉(zhuǎn)換。在國內(nèi)空間三維直角坐標(biāo)轉(zhuǎn)換中,通常采用7參數(shù)布爾沙沃爾夫模型、莫洛金斯基模型和范式模型,并且劉經(jīng)南院士和其同事在對這三種傳統(tǒng)轉(zhuǎn)換模型進(jìn)行分析的基礎(chǔ)上,從理論和實踐上證明了這三個模型的等價性,并在此基礎(chǔ)上他還提出了第4個等價模型“武測模型”,這些模型雖然表示形式上略有差異,但從坐標(biāo)轉(zhuǎn)換的最終結(jié)果而言,他們是等價的。1.3研究的主要內(nèi)容測量坐標(biāo)轉(zhuǎn)換問題在測量工程中經(jīng)
13、常遇到,其計算過程比較繁瑣,采用手動計算式相當(dāng)麻煩,國內(nèi)的許多坐標(biāo)軟件都有一個缺點操作界面過于復(fù)雜,操作起來也很繁瑣,為了提高軟件的交互性和實用性,我采用vb實現(xiàn)這一目的。本文首先介紹研究的背景和意義,國內(nèi)外研究現(xiàn)狀,接著對國內(nèi)外有關(guān)空間三維直角坐標(biāo)系做了系統(tǒng)概述,接著介紹了與坐標(biāo)轉(zhuǎn)換相關(guān)的知識以及坐標(biāo)轉(zhuǎn)換模型,并用vb設(shè)計了相關(guān)程序,最后是全文總結(jié)。2 相關(guān)理論和知識介紹由于當(dāng)今世界上有著有許多的參心坐標(biāo)系和地心坐標(biāo)系等,所以對于地球表面上的任一一點p,表述改點坐標(biāo)的方式有很多。因此對于地面上一點,由于所選擇的坐標(biāo)系不同,其表達(dá)方式也會不同。而且,即使使用同一坐標(biāo)系,也會有不同的表達(dá)方式。想
14、要弄清楚它們之間的聯(lián)系,那么就會涉及到坐標(biāo)轉(zhuǎn)換的問題。坐標(biāo)系統(tǒng)之間的坐標(biāo)轉(zhuǎn)換既包括不同的參心坐標(biāo)之間的轉(zhuǎn)換,或者不同的地心坐標(biāo)系之間的轉(zhuǎn)換,也包括參心坐標(biāo)系與地心坐標(biāo)系之間的轉(zhuǎn)換以及同一坐標(biāo)系下的直角坐標(biāo)與大地坐標(biāo)之間的坐標(biāo)轉(zhuǎn)換,還有大地坐標(biāo)與高斯平面坐標(biāo)之間的坐標(biāo)轉(zhuǎn)換等。2.1地球橢球由于地球內(nèi)部質(zhì)量分布不均,導(dǎo)致大地體其實是一個不平的似球體,經(jīng)過長期的理論研究和實踐認(rèn)為,當(dāng)一個通過南北兩極的子午圈,繞地球南北極旋轉(zhuǎn)一周而形成一個橢球體,用這個橢球面來代替大地水準(zhǔn)面,是一個很理想的計算基準(zhǔn)面。一個與大地體符合最好,最接近地球大小和形狀的旋轉(zhuǎn)橢球,稱為總地球橢球體。其具體條件為:1.總地球橢球
15、體的體積與大地體的體積一致,而且其表面與大地水準(zhǔn)面之間的差距的平方和最小。2.總地球橢球體的總質(zhì)量與地球的總質(zhì)量一致,而且其中心與地球重心相重合,總地球橢球的赤道面也應(yīng)該與地球的赤道一致。3.總地球橢球體的旋轉(zhuǎn)角速度與地球的旋轉(zhuǎn)角速度一致。在眾多橢球體中,wgs-84橢球體被認(rèn)為符合上述條件最好的橢球,由于經(jīng)典大地測量技術(shù)存在一定的局限性,大地測量工作者算出一個涵蓋整個大陸和海洋的總地球橢球,而是根據(jù)本國的測繪成果推求出一個最能表達(dá)本國或者是本地區(qū)的地球橢球體,就是所謂的參考橢球。地球表面、大地水準(zhǔn)面和橢球面三者的關(guān)系及偏差如下圖所示圖2-1 地球三個面及其偏差2.2 基準(zhǔn)所謂基準(zhǔn)是指為描述空
16、間位置而定義的點線面。而大地測量基準(zhǔn)是指用以描述地球形狀的地球橢球參數(shù),包含描述地球橢球幾何特征的長短半軸和物理特征的有關(guān)參數(shù)、地球在空間的定位及定向以及描述這些位置所采用的單位長度的定義。不同的坐標(biāo)系統(tǒng)會使用的基準(zhǔn)也不同。在大地測量中,根據(jù)參考橢球所選原點位置不同,可以分為地心坐標(biāo)系和參心坐標(biāo)系。地心坐標(biāo)系是以地球的質(zhì)心為原點,同樣有地心大地坐標(biāo)系和地心空間直角坐標(biāo)系兩種表述方法。地心空間直角坐標(biāo)系的定義為:以地球質(zhì)心為原點,x軸指向格林尼治子午面與地球赤道的交點,z軸指向北極,y軸過原點垂直于平面xoz,構(gòu)成右手空間直角坐標(biāo)系。地心大地坐標(biāo)系定義為:以地球的質(zhì)心作為原點,以地球自轉(zhuǎn)軸作為橢
17、球的短軸,大地緯度b是過地面點的橢球法線與橢球赤道面之間的夾角,大地經(jīng)度l為過地面點的橢球子午面與格林尼治子午面之間的夾角,大地高度h為地面點沿橢球法線到橢球面的最短距離。參心坐標(biāo)系是這樣定義的:選取一個參考橢球面作為基本的參考面,選一參考點作為大地測量的起算點,并且通過大地的質(zhì)點來進(jìn)行測量,從而確定參考橢球在地球面的位置和方向。這時參考橢球的原點一般不會和地球質(zhì)心重合,所以稱為參心。參心坐標(biāo)主要用于大地測量中,如測量某一地區(qū)的控制網(wǎng)等,所以又稱局部坐標(biāo)。它同樣具有參心大地坐標(biāo)系和參心直角坐標(biāo)系兩種表述方法,它們的定義與地心坐標(biāo)系的定義相似。2.3建立大地坐標(biāo)系的基本原理2.3.1橢球定位、定
18、向的概念大地坐標(biāo)系是建立在一定的大地基準(zhǔn)上的用于表達(dá)地球表面空間位置及其相對關(guān)系的數(shù)學(xué)參照系,這里所說的大地基準(zhǔn)是指能夠最佳擬合地球形狀的地球橢球的參數(shù)及橢球定位和定向。橢球定位是確定橢球中心的位置,可分為兩類:局部定位和地心定位。局部定位要求在一定范圍內(nèi)橢球面與大地水準(zhǔn)面有最佳的符合,而對橢球的中心位置無特殊要求;地心定位要求在全球范圍內(nèi)橢球面與大地水準(zhǔn)面有最佳的符合,同時要求橢球中心與地球質(zhì)心一致或最為接近。橢球定向是指確定橢球旋轉(zhuǎn)軸的方向,不論是局部定位還是地心定位,都應(yīng)滿足兩個平行條件:橢球短軸平行于地球自轉(zhuǎn)軸;大地起始子午面平行于天文起始子午面具有確定參數(shù)(長半徑a和扁率),經(jīng)過局部
19、定位和定向,同某一地區(qū)大地水準(zhǔn)面最佳擬合的地球橢球,叫做參考橢球。除了滿足地心定位和雙平行條件外,在確定橢球參數(shù)時能使它在全球范圍內(nèi)與大地體最密合的地球橢球,叫做總地球橢球。2.3.2參考橢球定位與定向的實現(xiàn)方法建立(地球)參心坐標(biāo)系,需進(jìn)行下面幾個工作:選擇或求定橢球的幾何參數(shù)(長短半徑);確定橢球中心位置(定位);確定橢球短軸的指向(定向);建立大地原點。參考橢球定位定向方法選定某一適宜的點k作為大地原點,在該點上實施精密的天文測量和高程測量,由此得到該點的天文經(jīng)度 ,天文緯度,至某一相鄰點的天文方位角和正高得到k點相應(yīng)的大地經(jīng)度,大地緯度 ,至某一相鄰點的大地方位角和大地高 (2.1)
20、2.3.3多點定位一點定位的結(jié)果在較大范圍內(nèi)往往難以使橢球面與大地水準(zhǔn)面有較好的密合。所以在國家或地區(qū)的天文大地測量工作進(jìn)行到一定的時候或基本完成后,利用許多拉普拉斯點(即測定了天文經(jīng)度、天文緯度和天文方位角的大地點)的測量成果和已有的橢球參數(shù),按照廣義弧度測量方程按=最小或=最小)這一條件,通過計算進(jìn)行新的定位和定向,從而建立新的參心大地坐標(biāo)系。按這種方法進(jìn)行參考橢球的定位和定向,由于包含了許多拉普拉斯點,因此通常稱為多點定位法。多點定位的結(jié)果使橢球面在大地原點不再同大地水準(zhǔn)面相切,但在所使用的天文大地網(wǎng)資料的范圍內(nèi),橢球面與大地水準(zhǔn)面有最佳的密合。3 坐標(biāo)系統(tǒng)簡介所謂坐標(biāo)系指的是描述空間位
21、置的表達(dá)形式,即采用什么方法來表示空間位置。人們?yōu)榱嗣枋隹臻g位置,采用了多種方法,從而也產(chǎn)生了不同的坐標(biāo)系。3.1測量常用的坐標(biāo)系3.1.1大地坐標(biāo)系空間大地坐標(biāo)系以大地經(jīng)度l,地緯度b,大地高h(yuǎn)來表示空間某一點的位置。地面上p點的大地子午面nps與起始大地子午面所構(gòu)成的二面角l,叫做p點的大地經(jīng)度,有起始子午面起算,向東為正,成為東經(jīng),向西為負(fù),稱為西經(jīng),p點對于橢球的法線pk與赤道面的夾角b,叫做p點的大地緯度,有赤道面起算,向北為正,稱為北緯,向南為負(fù),稱為南緯,如3-1圖所示圖3-1 大地坐標(biāo)示意圖p點沿法線到橢球面的距離h,叫大地高,從橢球面起算,向外為正,向里為負(fù)。gps測量出來的
22、高程為大地高,與我們所選要的正常高存在高程異常。大地高h(yuǎn)與水準(zhǔn)測量中的正常高或正高有以下關(guān)系h(大地高)=(正常高)+(高程異常) 圖3-2 大地水準(zhǔn)面的差距3.1.2空間直角坐標(biāo)系空間直角坐標(biāo)系的坐標(biāo)原點與參考橢球的中心重合,z軸正向指向參考橢球的北極,x軸正向指向起始子午面與赤道的交點,y軸按右手系與x軸呈9 0夾角且位于赤道面上。某點在空間中的坐標(biāo)可用該點在此空間坐標(biāo)系的各個坐標(biāo)軸上的投影來表示,如圖所示: 圖3-3 空間直角坐標(biāo)系示意圖3.1.3平面坐標(biāo)系平面直角坐標(biāo)系是利用投影,將空間坐標(biāo)(空間直角坐標(biāo)或空間大地坐標(biāo))通過某種數(shù)學(xué)變換映射到平面上,這種變換稱為投影變換。投影變換的方法
23、有很多,如lambuda投影,utm投影等,在我國一般采用的是高斯一克呂格投影,也稱為高斯投影。地形測圖以及許多的測量定位應(yīng)用在現(xiàn)實中是我們常見的平面直角坐標(biāo)。對于一個國家或較大區(qū)域,應(yīng)按照一定的數(shù)學(xué)法則將參考橢球面上的各點的大地經(jīng)緯度投影為平面上相對應(yīng)點的平面直角坐標(biāo)。由于地球橢球面是不可展曲面,所以無論采用什么樣的投影都會產(chǎn)生一定變形。投影變形一般分為長度變形,角度變形和面積變形這三種。根據(jù)制測量的任務(wù)和目的應(yīng)當(dāng)采用等角投影(又稱正形投影)。在采用的正形投影時,還要求長度和面積變形不大,并且能用簡單的公式來計算這些變形而帶來的改正數(shù)。為了解決這些的矛盾,測量上往往是將一個大的區(qū)域按照一定規(guī)
24、律分成若干個小的區(qū)域(或帶)。每個區(qū)域單獨投影,并組成自身的直角坐標(biāo)系,然后,在將這些帶用簡單的數(shù)學(xué)方法聯(lián)系起來,從而組成同一系統(tǒng)。目前測量上廣泛采用的是高斯投影,它是一種正形投影,它的特點是:沒有角度變形,在不同點上的長度比隨點位而異,但在同一點上各方向的長度比相同。高斯-克呂格正形投影又稱橫軸橢圓柱投影,即橢圓柱內(nèi)面橫套在地球橢球的外表面,橢圓柱的中心通過橢球的中心,并在某一中央子午線上相切,該中央子午線就是高斯平面直角坐標(biāo)系的x軸,x軸沒有長度變形,赤道在橢圓柱上的投影是高斯平面直角坐標(biāo)系的y軸,把橢球柱展開,就得到以(x,y)為坐標(biāo)的高斯平面直角坐標(biāo)系。3.1.4地方獨立坐標(biāo)系在我國,
25、平面坐標(biāo)主要采用的是高斯投影,在該投影中,除中央子午線外,其它位置上的任何線段,投影后都會產(chǎn)生一定的長度變形,而且變形隨離開中央子午線的距離增加而增加。因此,一般采用分帶投影的辦法,來限制長度變形。我國規(guī)定了采用3度帶或6度帶進(jìn)行分帶投影。在城市、工礦等工程測量中,如果直接在國家分帶坐標(biāo)系中建立控制網(wǎng),會使地面長度投影的變形較大,當(dāng)長度變形大于2.5 cm/km時,就難以滿足工程上的需要。因此為了滿足大比例尺測圖和進(jìn)行施工放樣時的需要,必需是基于一個與當(dāng)?shù)仄骄0胃叱虒?yīng)的參考橢球。而且該橢球的扁率、中心、軸向一般與國家參考橢球體相同,但其長半軸則必有一個修正量,這個參考橢球就被稱為地方參考橢
26、球。另一些特殊的測量,比如大橋施工測量,水利水壩測量,滑坡變形監(jiān)測等,采用國家坐標(biāo)系精度達(dá)不到要求,不實用也不方便,常常會建立適合本地區(qū)的地方獨立坐標(biāo)系。3.2 我國常用的坐標(biāo)系統(tǒng)3.2.1 1954年北京坐標(biāo)系1954年,總參測繪局在有關(guān)方面的建議與支持下,鑒于當(dāng)時的歷史條件,采取先將我國一等鎖與前蘇聯(lián)遠(yuǎn)東一等鎖相聯(lián)接,然后以連接處呼瑪,吉拉林,東寧基線網(wǎng)擴(kuò)大邊端點的前蘇聯(lián)1942年普爾科沃坐標(biāo)系的坐標(biāo)為起算數(shù)據(jù),平差我國東北及東部一等鎖,這樣從蘇聯(lián)傳算來的坐標(biāo)系定名為1954年北京坐標(biāo)系。1954年北京坐標(biāo)系實際上是前蘇聯(lián)1942年普爾科沃坐標(biāo)系在我國的延伸,但我國坐標(biāo)系的大地點高程(19
27、56年黃海高程系)卻與前蘇聯(lián)坐標(biāo)系的計算基準(zhǔn)面不同,因此嚴(yán)格意義上來說,二者不是完全相同的大地坐標(biāo)系。特點:u 1954年北京坐標(biāo)系屬于參心坐標(biāo)系;u 采用克拉索夫斯基橢球參數(shù);u 多點定位:垂線偏差由900個點解得,大地水準(zhǔn)面差距由43個點解得;u 大地原點是前蘇聯(lián)的普爾科沃;u 大地點高程是以1956年青島驗潮站求出的黃海平均海水面為基準(zhǔn);u 高程異常是以前蘇聯(lián)1955年大地水準(zhǔn)面重新平差結(jié)果為起算值,按我國天文水準(zhǔn)路線推算出來的;u 提供的大地點成果是局部平差結(jié)果。 問題和缺點:u 克拉索夫斯基橢球比現(xiàn)代精確橢球相差過大;u 只涉及兩個幾何性質(zhì)的橢球參數(shù)(a和),滿足不了當(dāng)今理論研究和實
28、際工作中所需四個地球橢球基本參數(shù)的要求;u 處理重力數(shù)據(jù)時采用的是赫爾默特1901到1909年正常重力公式,與之相應(yīng)的赫爾默特扁球不是旋轉(zhuǎn)橢球,它與克拉索夫斯基橢球是不一致的;對應(yīng)的參考橢球面與我國大地水準(zhǔn)面存在著自西向東明顯的系統(tǒng)性傾斜,在東部地區(qū)高程異常最大達(dá)到65米,全國范圍平均29米;u 橢球定向不明確,橢球短軸指向既不是cio,也不是我國的jyd1968.0;u 起始子午面不是國際時間局bih所定義的格林尼治平均天文臺子午面,給坐標(biāo)換算帶來一些不便和誤差;u 坐標(biāo)系未經(jīng)整體平差而僅是局部平差成果,點位精度不高,也不均勻;u 名不副實,容易引起一些誤解。3.2.2 1980年國家大地坐
29、標(biāo)系特點:u 1980年國家大地坐標(biāo)系屬參心大地坐標(biāo)系;u 采用既含幾何參數(shù)又含物理參數(shù)的四個橢球基本參數(shù)。數(shù)值采用1975年iugg第16屆大會的推薦值;u 多點定位;u 定向明確。地球橢球短軸平行于由地球質(zhì)心指向地極原點jyd1968.0方向,起始大地子午面平行于我國起始天文子午面;u 大地原點在我國中部:陜西省涇陽縣永樂鎮(zhèn),簡稱西安原點;u 大地點高程以1956年青島驗潮站求出的黃海平均海水面為基準(zhǔn);u 1980年國家大地坐標(biāo)系建立后,進(jìn)行了全國天文大地網(wǎng)整體平差,計算了5萬余個點的成果。新問題:u 原來的各種關(guān)于橢球參數(shù)的用表均要變更u 低等點要重新平差,編撰新的三角點成果表u 地形圖
30、圖廓線和方里網(wǎng)線位置發(fā)生變化,并引起地形圖內(nèi)地形、地物相關(guān)位置的改變u 新形勢下1980年國家大地坐標(biāo)系的地極原點jyd1968.0已不能適應(yīng)當(dāng)代建立高精度天文地球動力學(xué)系帶要求。3.2.3 1954年北京坐標(biāo)系(整體平差轉(zhuǎn)換值)它是在1980年國家大地坐標(biāo)系的基礎(chǔ)上,改變iugg1975年橢球至克拉索夫斯基橢球,通過在空間三個坐標(biāo)軸上進(jìn)行平移而來的。因此,其坐標(biāo)值仍體現(xiàn)了整體平差的特點,精度和1980年國家大地坐標(biāo)系相同,克服了1954年北京坐標(biāo)系局部平差的缺點;其坐標(biāo)軸和1980年國家大地坐標(biāo)系坐標(biāo)軸相互平行,所以它的定向明確;它的橢球參數(shù)恢復(fù)為1954年北京坐標(biāo)系的橢球參數(shù),從而使其坐標(biāo)
31、值和1954年北京坐標(biāo)系局部平差坐標(biāo)值相差較小。特點:u 屬參心大地坐標(biāo)系;長短軸采用克拉索夫斯基橢球參數(shù);u 多點定位,參心雖和1954年北京坐標(biāo)系參心不相一致,但十分接近;u 定向明確,與1980年國家大地坐標(biāo)系的定向相同;u 大地原點與1980年國家大地坐標(biāo)系相同,但大地起算數(shù)據(jù)不同;u 大地點高程基準(zhǔn)是以1956年青島驗潮站求出的黃海平均海水面為基準(zhǔn);u 提供坐標(biāo)是1980年國家大地坐標(biāo)系整體平差轉(zhuǎn)換值,精度一致;u 用于測圖坐標(biāo)系,對于1:5萬以下比例尺測圖,新舊圖接邊,不會產(chǎn)生明顯裂痕。3.2.4 wgs-84世界大地坐標(biāo)系該坐標(biāo)系是一個協(xié)議地球參考系cts(conventiona
32、l terrestrial system),其原點是地球的質(zhì)心,z軸指向bih1984.0定義的協(xié)議地球極ctp(conventional terrestrial pole)方向,x軸指向bih1984.0零度子午面和ctp赤道的交點,y軸和z、x軸構(gòu)成右手坐標(biāo)系。wgs-84橢球采用國際大地測量與地球物理聯(lián)合會第17屆大會大地測量常數(shù)推薦值 自1987年1月10日之后,gps衛(wèi)星星歷均采用wgs-84坐標(biāo)系統(tǒng)。因此gps網(wǎng)的測站坐標(biāo)及測站之間的坐標(biāo)差均屬于wgs-84系統(tǒng)。為了求得gps測站點在地面坐標(biāo)系(屬于參心坐標(biāo)系)中的坐標(biāo),就必須進(jìn)行坐標(biāo)系的轉(zhuǎn)換。3.2.5 2000國家大地坐標(biāo)系2
33、008年3月,由國土資源部正式上報國務(wù)院關(guān)于中國采用2000國家大地坐標(biāo)系的請示,并于2008年4月獲得國務(wù)院批準(zhǔn)。自2008年7月1日起,中國將全面啟用2000國家大地坐標(biāo)系,國家測繪局受權(quán)組織實施。2000國家大地坐標(biāo)系是全球地心坐標(biāo)系在我國的具體體現(xiàn),其原點為包括海洋和大氣的整個地球的質(zhì)量中心。2000國家大地坐標(biāo)系采用的地球橢球參數(shù)如下:長半軸 a=6378137m 扁率f=1/298.257222101 地心引力常數(shù)gm=3.9860044181014m3s-2自轉(zhuǎn)角速度=7.292l1510-5rad s-1采用2000國家大地坐標(biāo)系具有科學(xué)意義,隨著經(jīng)濟(jì)發(fā)展和社會的進(jìn)步,我國航天
34、、海洋、地震、氣象、水利、建設(shè)、規(guī)劃、地質(zhì)調(diào)查、國土資源管理等領(lǐng)域的科學(xué)研究需要一個以全球參考基準(zhǔn)為背景的、全國統(tǒng)一的、協(xié)調(diào)一致的坐標(biāo)系統(tǒng),來處理國家、區(qū)域、海洋與全球化的資源、環(huán)境、社會和信息等問題,需要采用定義更加科學(xué)、原點位于地球質(zhì)量中心的三維國家大地坐標(biāo)系。4 坐標(biāo)轉(zhuǎn)換理論與程序設(shè)計4.1坐標(biāo)轉(zhuǎn)換的基本概念 坐標(biāo)轉(zhuǎn)換是測繪實踐中經(jīng)常遇到的重要問題之一。 坐標(biāo)轉(zhuǎn)換通常包含兩層含義:坐標(biāo)系變換和基準(zhǔn)變換。 坐標(biāo)系變換:就是在同一地球橢球下,空間點的不同坐標(biāo)表示形式間進(jìn)行變換。包括大地坐標(biāo)系與空間直角坐標(biāo)系的相互轉(zhuǎn)換、空間直角坐標(biāo)系與站心坐標(biāo)系的轉(zhuǎn)換、以及大地坐標(biāo)系與高斯平面坐標(biāo)系的轉(zhuǎn)換(即
35、高斯投影正反算) 基準(zhǔn)變換:是指空間點在不同的地球橢球間的坐標(biāo)變換。可用空間的三參數(shù)或七參數(shù)實現(xiàn)不同橢球間空間直角坐標(biāo)系或不同橢球間大地坐標(biāo)系的轉(zhuǎn)換。4.2坐標(biāo)系轉(zhuǎn)換的模型4.2.1同一參考橢球下大地坐標(biāo)系與空間直角坐標(biāo)系的相互轉(zhuǎn)換(1)大地坐標(biāo)系轉(zhuǎn)換為空間直角坐標(biāo)系(blhxyz) 將同一坐標(biāo)系下的大地坐標(biāo)(b,l,h)轉(zhuǎn)換成空間直角坐標(biāo)(x,y,z)的轉(zhuǎn)換公式為: (4.1) 式中,e為第一偏心率;n為卯酉圈的半徑;b為短半軸;a為參考橢球長半軸;b為短半軸;并且有若點在橢球面上,則大地高h(yuǎn)=0,式可簡化為: (4.2) (2)空間直角坐標(biāo)系轉(zhuǎn)換為大地坐標(biāo)系( xyz blh )將同一坐標(biāo)
36、系下的空間直角坐標(biāo)(x,y,z轉(zhuǎn)換為大地坐標(biāo)(b,l,h)的公式為: (4.3) 在使用上式進(jìn)行空間直角坐標(biāo)到大地坐標(biāo)的轉(zhuǎn)換時,因為計算大地緯度b時需要用到大地高h(yuǎn),而計算大地高時又需要用到大地緯度b。因此不能直接計算出大地坐標(biāo),而需要采用迭代計算的方法。具體計算時,可先根據(jù)下式求出大地緯度b的初值:然后利用該初值代入公式來求大地高h(yuǎn),n的初值,再利用所求出的大地高h(yuǎn)和n的初值代入公式中再次求出b值。再將b代入公式求h和n,如此反復(fù),直至求出的b,h,n收斂為止。也可以采用下面的算法直接將空間直角坐標(biāo)轉(zhuǎn)換為大地坐標(biāo): (4.4)e為參考橢球的第二偏心率。在主要代碼如下:各橢球參數(shù):pi = 3
37、.14159265358979xaa = 6378140: xab = 6356755.28815753: xac = 6399596.65198801: xae2 = 0.006694384999588: xae12 = 0.006739501819473bja = 6378245: bjb = 6356863.01877305: bjc = 6399698.90178271: bje2 = 0.006693421622966: bje12 = 0.006738525414683wgsa = 6378137: wgsb = 6356752.3142: wgsc = 6399593.6258:
38、 wgse2 = 0.0066943799013: wgse12 = 0.00673949674227度分秒轉(zhuǎn)換下弧度:s = val(txt)du = fix(s)fe = fix(s - du) * 100)mi = round(s - du - fe * 0.01) * 10000, 4)rad = (du + fe / 60 + mi / 3600) * pi / 180程序設(shè)計界面如下:每一個國家大地坐標(biāo)系都有自己的基準(zhǔn)參數(shù),每一個坐標(biāo)系都有幾種表現(xiàn)形式,如上圖所示,可以用b、l、h表示也可以用x、y、z所示,只要知道橢球參數(shù)利用公式即可實現(xiàn)這轉(zhuǎn)換。利用vb實現(xiàn)大地坐標(biāo)與空間直角坐標(biāo)
39、的轉(zhuǎn)換程序直觀易懂,操作方便,在日常的測繪工作中這種類似程序并不經(jīng)常,程序的缺陷沒有把經(jīng)緯度轉(zhuǎn)換成度分秒。算例:設(shè)一個點在bj54坐標(biāo)系統(tǒng)下的大地坐標(biāo)為(40,50,100),將其轉(zhuǎn)換成空間直角坐標(biāo)得:將其轉(zhuǎn)換所得空間直角坐標(biāo)(3145073.692,3748152.872,4078122.028)再轉(zhuǎn)換回去得:所得數(shù)據(jù)與原數(shù)據(jù)無差別!用同樣的方法分別驗算在西安80坐標(biāo)系統(tǒng)下和在wgs84坐標(biāo)系統(tǒng)下的情況,所得結(jié)果如下:在西安80坐標(biāo)系統(tǒng)下所得數(shù)據(jù)與原數(shù)據(jù)均無差別,在wgs84坐標(biāo)系統(tǒng)下所得數(shù)據(jù)與原數(shù)據(jù)相差0.001,在限差范圍內(nèi),證明程序可行!4.3基準(zhǔn)轉(zhuǎn)換的模型4.3.1不同地球橢球坐標(biāo)系
40、的空間三參數(shù)或七參數(shù)轉(zhuǎn)換 不同地球橢球之間的坐標(biāo)系轉(zhuǎn)換實際上是不同基準(zhǔn)之間的轉(zhuǎn)換。 不同基準(zhǔn)之間的轉(zhuǎn)換方法很多,可以通過空間變換的方法實現(xiàn),亦可用平面變換方法進(jìn)行。下面介紹七參數(shù)布爾莎模型 設(shè)兩不同地球橢球的對應(yīng)的兩個空間直角坐標(biāo)系間有7個轉(zhuǎn)換參數(shù): 3個平移參數(shù)(原點不重合產(chǎn)生); 3個旋轉(zhuǎn)參數(shù)(坐標(biāo)軸不平行產(chǎn)生); 1個尺度參數(shù)(兩坐標(biāo)系間的尺度不一致產(chǎn)生)。見下圖設(shè)(xa,ya,za)為某點在a空間直角坐標(biāo)系中的三維坐標(biāo),(xb,yb,zb)為某點在b空間直角坐標(biāo)系中的三維坐標(biāo),(x0, y0, z0)為某點從a空間直角坐標(biāo)系轉(zhuǎn)換到b空間直角坐標(biāo)系中的三個平移參數(shù),( x, y, z )
41、為某點從a空間直角坐標(biāo)系轉(zhuǎn)換到b空間直角坐標(biāo)系中的三個旋轉(zhuǎn)參數(shù),k為某點從a空間直角坐標(biāo)系轉(zhuǎn)換到b空間直角坐標(biāo)系中的三個尺度參數(shù)。則點從a空間直角坐標(biāo)系轉(zhuǎn)換到b空間直角坐標(biāo)系中的模型為式中:程序設(shè)計界面如下:算例1:設(shè)一個坐標(biāo)系的基準(zhǔn)面和wgs-84基準(zhǔn)面之間的變換關(guān)系已知,它們之間的轉(zhuǎn)換7參數(shù)為k=2,x=0.01,y=0.02,z=0.03,x=100,y=100,z=100,則隨便輸入1個在wgs-84坐標(biāo)系的點的空間直角坐標(biāo)為 a1(1,2,3)通過正算可得:所得坐標(biāo)為a2(102.998,105.998,109.002),再將所得坐標(biāo)a2(102.998,105.998,109.00
42、2)通過反算可得:所得坐標(biāo)為(1.000,2.000,3.000),所得數(shù)據(jù)與原數(shù)據(jù)無差別!算例2:設(shè)一個坐標(biāo)系的基準(zhǔn)面和wgs-84基準(zhǔn)面之間的變換關(guān)系已知,它們之間的轉(zhuǎn)換7參數(shù)為k=1.2,x=0.003,y=0.004,z=0.005,x=678.912,y=345.678,z=901.234,則隨便輸入1個在這個坐標(biāo)系的點的空間直角坐標(biāo)為 b2(567.890,123.456,789.012)通過反算可得:所得坐標(biāo)為b1(-50.164,-101.109,-51.111),再將所得坐標(biāo)b1(-50.164,-101.109,-51.111)通過正算可得:所得坐標(biāo)為(567.891,12
43、3.455,789.011),與原數(shù)據(jù)只相差0.001,在限差范圍之內(nèi),故程序可行。5 全文總結(jié)橢球面上的點位可在各種坐標(biāo)系中表示,由于所用坐標(biāo)系不同,表現(xiàn)出來的坐標(biāo)值也不同。在實際應(yīng)用中,要想對不同測量坐標(biāo)系下的坐標(biāo)進(jìn)行綜合處理,使他們之間有所聯(lián)系,必然會涉及到測量坐標(biāo)轉(zhuǎn)換問題。測量坐標(biāo)轉(zhuǎn)換包含測量坐標(biāo)系轉(zhuǎn)換和測量坐標(biāo)基準(zhǔn)轉(zhuǎn)換兩個方面內(nèi)容。測量坐標(biāo)系轉(zhuǎn)換是指在同一參考橢球下,空間點的不同坐標(biāo)形式間的坐標(biāo)轉(zhuǎn)換。測量坐標(biāo)基準(zhǔn)轉(zhuǎn)換是指不同基準(zhǔn)下測量坐標(biāo)之間的轉(zhuǎn)換,其關(guān)鍵在于確定坐標(biāo)轉(zhuǎn)換參數(shù)。由于本人的知識水平和計算機(jī)編程語言掌握的有限,論文還存在許多不足之處,本文存在不足建議在以下方面繼續(xù)做工作:
44、(1)本文主要只介紹幾種轉(zhuǎn)換模型,還有其他的幾種模型有待去實現(xiàn)。(2)對這些模型和公式的具體適用在什么情況以及他們的優(yōu)缺點要有詳細(xì)闡明。(3)對程序界面設(shè)計功能進(jìn)行完善,以更好的為用戶使用。(4) 在編程方面應(yīng)多下功夫以實現(xiàn)各種坐標(biāo)系統(tǒng)之間的轉(zhuǎn)換。參考文獻(xiàn)1 孔祥元,郭際明,劉宗泉.大地測量學(xué)基礎(chǔ)m.武漢:武漢大學(xué)出版社,2009.2 李征航,黃勁松.gps測量與數(shù)據(jù)處理m.武漢:武漢大學(xué)出版社,2005.3 劉大杰,白征東等.大地坐標(biāo)轉(zhuǎn)換與gps控制網(wǎng)平差計算及軟件系統(tǒng)m.同濟(jì)大學(xué)出版社,1997:16-23.4 潘正風(fēng),程效軍,成樞,王騰軍,宋偉東,鄒進(jìn)貴.數(shù)字測圖原理與方法m.武漢:武漢
45、大學(xué)出版社,2009.5 沈云中.獨立坐標(biāo)系中g(shù)ps網(wǎng)的坐標(biāo)變換方法.工程勘察,1998(1).6 朱華統(tǒng). 大地坐標(biāo)系的建立m. 北京:測繪出版社,1986.7 徐仕琪,張曉帆,周可法,趙同陽.關(guān)于利用七參數(shù)法進(jìn)行wgs84和bj54坐標(biāo)轉(zhuǎn)換問題的探討j.測繪與空間地理信息,2007,308 曾文憲,陶本藻. 3維坐標(biāo)轉(zhuǎn)換的非線性模型j.武漢大學(xué)學(xué)報(信息科學(xué)版),2003,28(5):566-568.9 韓曉冬,陶華學(xué),董軍. 空間直角坐標(biāo)系非線性坐標(biāo)轉(zhuǎn)換模型j.工程勘察,2002,(5):27-30.10 朱華統(tǒng),楊元喜,呂志平.gps坐標(biāo)系統(tǒng)的變換m.北京:測繪出版社,1994.11朱
46、華統(tǒng),大地坐標(biāo)系的建立m,測繪出版社,2008.5,19-2012孫建,北京54坐標(biāo)系中的坐標(biāo)計算j,水運工程,2010.2,2513寧津生,現(xiàn)代大地測量參考系統(tǒng)j,測繪學(xué)報,2012.5,5-714周崇山、李紅波、劉偉,測量中坐標(biāo)轉(zhuǎn)換計算程序的開發(fā)及應(yīng)用j,江西科學(xué),2011,29.1-3。15洪大永.gps全球定位系統(tǒng)技術(shù)及其應(yīng)用m.廈門大學(xué)出版社.2010,32-35.附 錄大地坐標(biāo)與空間直角坐標(biāo)相互轉(zhuǎn)換程序 public xaa, xab, xac, xae2, xae12 as double public bja, bjb, bjc, bje2, bje12 as double pu
47、blic wgsa, wgsb, wgsc, wgse2, wgse12 as double public pi as double private sub command1_click() dim a, e2, n, br, lr, h, x, y, z as double a = bja e2 = bje2 h = val(text3.text) br = rad(text1.text) lr = rad(text2.text) n = a / sqr(1 - e2 * (sin(br) 2) x = (n + h) * cos(br) * cos(lr) y = (n + h) * co
48、s(br) * sin(lr) z = (n * (1 - e2) + h) * sin(br) text4.text = format(x, 0.000) text5.text = format(y, 0.000) text6.text = format(z, 0.000) end sub private sub command2_click() dim a, e2, e12, b, q, n, br, ba, la, lr, h, x, y, z as double a = bja e2 = bje2 b = bjb e12 = bje12 x = val(text4.text) y =
49、val(text5.text) z = val(text6.text) q = atn(z * a) / (sqr(x 2 + y 2) * b) if x 0 then lr = atn(y / x) elseif y 0 then lr = atn(y / x) + pi else lr = atn(y / x) - pi end if br = atn(z + e12 * b * (sin(q) 3) / (sqr(x 2 + y 2) - e2 * a * (cos(q) 3) n = a / sqr(1 - e2 * (sin(br) 2) h = sqr(x 2 + y 2) /
50、cos(br) - n ba = txt(br) la = txt(lr) text1.text = format(ba, 0.000) text2.text = format(la, 0.000) text3.text = format(h, 0.000) end sub private sub command3_click() dim a, e2, n, br, lr, h, x, y, z as double a = xaa e2 = xae2 h = val(text3.text) br = rad(text1.text) lr = rad(text2.text) n = a / sq
51、r(1 - e2 * (sin(br) 2) x = (n + h) * cos(br) * cos(lr) y = (n + h) * cos(br) * sin(lr) z = (n * (1 - e2) + h) * sin(br) text4.text = format(x, 0.000) text5.text = format(y, 0.000) text6.text = format(z, 0.000) end sub private sub command4_click() dim a, e2, e12, b, q, n, br, ba, la, lr, h, x, y, z a
52、s double a = xaa e2 = xae2 b = xab e12 = xae12 x = val(text4.text) y = val(text5.text) z = val(text6.text) q = atn(z * a) / (sqr(x 2 + y 2) * b) if x 0 then lr = atn(y / x) elseif y 0 then lr = atn(y / x) + pi else lr = atn(y / x) - pi end if br = atn(z + e12 * b * (sin(q) 3) / (sqr(x 2 + y 2) - e2 * a * (cos(q) 3) n = a / sqr(1 - e2 * (sin(br) 2) h = sqr(x 2 + y 2) / cos
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 放射性物品買賣合同協(xié)議書
- 技術(shù)成果轉(zhuǎn)讓合同
- 生物藥品的藥代動力學(xué)研究考核試卷
- 疾病預(yù)防控制與心理健康促進(jìn)考核試卷
- 2024年04月河南省濟(jì)源示范區(qū)事業(yè)單位聯(lián)考招聘138名筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 淀粉在電子元件封裝的導(dǎo)電應(yīng)用考核試卷
- 禽類屠宰加工企業(yè)生產(chǎn)安全管理考核試卷
- 有機(jī)合成中超聲波輔助反應(yīng)的研究考核試卷
- 畜產(chǎn)品加工產(chǎn)業(yè)發(fā)展戰(zhàn)略與規(guī)劃考核試卷
- 兔子日常護(hù)理與健康管理考核試卷
- 員工食堂就餐協(xié)議書
- 創(chuàng)傷緊急救護(hù)知識課件
- 湖北省第十屆湖北省高三(4月)調(diào)研模擬考試數(shù)學(xué)試題及答案
- 2025年03月廣東深圳市光明區(qū)科技創(chuàng)新局公開招聘專干5人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 內(nèi)蒙古通遼市科左中旗實驗小學(xué)2025屆數(shù)學(xué)三下期末質(zhì)量檢測試題含解析
- 海參收購協(xié)議書范本
- 高溫急救知識培訓(xùn)
- 2025年江蘇蘇州市相城區(qū)六大區(qū)屬國有公司招聘筆試參考題庫附帶答案詳解
- 2025年03月紹興市諸暨市綜合行政執(zhí)法局執(zhí)法輔助人員27人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 學(xué)前教育學(xué) 課件 第1、2章 緒論;學(xué)前教育的目標(biāo)、內(nèi)容的方法
- 部編人教版五年級語文下冊教學(xué)策略計劃
評論
0/150
提交評論