




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省聊城市陽谷縣2025年初三下學期期中聯考(全國卷)數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.2.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為40km.他們前進的路程為s(km),甲出發后的時間為t(h),甲、乙前進的路程與時間的函數圖象如圖所示.根據圖象信息,下列說法不正確的是()A.甲的速度是10km/h B.乙的速度是20km/hC.乙出發h后與甲相遇 D.甲比乙晚到B地2h3.下列各數中是有理數的是()A.π B.0 C. D.4.兩個有理數的和為零,則這兩個數一定是()A.都是零 B.至少有一個是零C.一個是正數,一個是負數 D.互為相反數5.下列各數中,比﹣1大1的是()A.0B.1C.2D.﹣36.如圖,在平面直角坐標系xOy中,A(2,0),B(0,2),⊙C的圓心為點C(﹣1,0),半徑為1.若D是⊙C上的一個動點,線段DA與y軸交于E點,則△ABE面積的最小值是()A.2B.83C.2+27.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.8.下列計算結果為a6的是()A.a2?a3B.a12÷a2C.(a2)3D.(﹣a2)39.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°10.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,矩形AOCB的兩邊OC、OA分別位于x軸、y軸上,點B的坐標為B(),D是AB邊上的一點.將△ADO沿直線OD翻折,使A點恰好落在對角線OB上的點E處,若點E在一反比例函數的圖像上,那么k的值是_______12.“五一勞動節”,王老師將全班分成六個小組開展社會實踐活動,活動結束后,隨機抽取一個小組進行匯報展示.第五組被抽到的概率是___.13.一個凸多邊形的內角和與外角和相等,它是______邊形.14.如圖,甲、乙兩船同時從港口出發,甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°方向航行,半小時后甲船到達點C,乙船正好到達甲船正西方向的點B,則乙船的航程為______海里(結果保留根號).15.二次函數y=x2-2x+1的對稱軸方程是x=_______.16.據媒體報道,我國研制的“察打一體”無人機的速度極快,經測試最高速度可達204000米/分,將204000這個數用科學記數法表示為_____.三、解答題(共8題,共72分)17.(8分)如圖,在由邊長為1個單位長度的小正方形組成的10×10網格中,已知點O,A,B均為網格線的交點.在給定的網格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應點分別為).畫出線段;將線段繞點逆時針旋轉90°得到線段.畫出線段;以為頂點的四邊形的面積是個平方單位.18.(8分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當的半徑為1時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標的取值范圍.19.(8分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形?若存在,試求出點Q的坐標;若不存在,請說明理由.20.(8分)某數學興趣小組為測量如圖(①所示的一段古城墻的高度,設計用平面鏡測量的示意圖如圖②所示,點P處放一水平的平面鏡,光線從點A出發經過平面鏡反射后剛好射到古城墻CD的頂端C處.已知AB⊥BD、CD⊥BD,且測得AB=1.2m,BP=1.8m.PD=12m,求該城墻的高度(平面鏡的原度忽略不計):請你設計一個測量這段古城墻高度的方案.要求:①面出示意圖(不要求寫畫法);②寫出方案,給出簡要的計算過程:③給出的方案不能用到圖②的方法.21.(8分)如圖所示,已知,試判斷與的大小關系,并說明理由.22.(10分)如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.23.(12分)如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于A(﹣2,1),B(1,n)兩點.求反比例函數和一次函數的解析式;根據圖象寫出一次函數的值大于反比例函數的值的x的取值范圍.24.先化簡,再計算:其中.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.2、B【解析】由圖可知,甲用4小時走完全程40km,可得速度為10km/h;乙比甲晚出發一小時,用1小時走完全程,可得速度為40km/h.故選B3、B【解析】【分析】根據有理數是有限小數或無限循環小數,結合無理數的定義進行判斷即可得答案.【詳解】A、π是無限不循環小數,屬于無理數,故本選項錯誤;B、0是有理數,故本選項正確;C、是無理數,故本選項錯誤;D、是無理數,故本選項錯誤,故選B.【點睛】本題考查了實數的分類,熟知有理數是有限小數或無限循環小數是解題的關鍵.4、D【解析】解:互為相反數的兩個有理數的和為零,故選D.A、C不全面.B、不正確.5、A【解析】
用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.本題考查了有理數加法的運算,解題的關鍵是要熟練掌握:“先符號,后絕對值”.6、C【解析】當⊙C與AD相切時,△ABE面積最大,連接CD,則∠CDA=90°,∵A(2,0),B(0,2),⊙C的圓心為點C(-1,0),半徑為1,∴CD=1,AC=2+1=3,∴AD=AC2-CD2∵∠AOE=∠ADC=90°,∠EAO=∠CAD,∴△AOE∽△ADC,∴OA即222=∴BE=OB+OE=2+2∴S△ABE=1BE?OA=12×(2+22故答案為C.7、C【解析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.8、C【解析】
分別根據同底數冪相乘、同底數冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;
B、a12÷a2=a10,此選項不符合題意;
C、(a2)3=a6,此選項符合題意;
D、(-a2)3=-a6,此選項不符合題意;
故選C.本題主要考查冪的運算,解題的關鍵是掌握同底數冪相乘、同底數冪相除、冪的乘方的運算法則.9、C【解析】
如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.10、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.二、填空題(本大題共6個小題,每小題3分,共18分)11、-12【解析】過E點作EF⊥OC于F,如圖所示:
由條件可知:OE=OA=5,,所以EF=3,OF=4,
則E點坐標為(-4,3)
設反比例函數的解析式是y=,則有k=-4×3=-12.故答案是:-12.12、【解析】
根據概率是所求情況數與總情況數之比,可得答案.【詳解】因為共有六個小組,所以第五組被抽到的概率是,故答案為:.本題考查了概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.13、四【解析】
任何多邊形的外角和是360度,因而這個多邊形的內角和是360度.n邊形的內角和是(n-2)?180°,如果已知多邊形的內角和,就可以得到一個關于邊數的方程,解方程就可以求出多邊形的邊數.【詳解】解:設邊數為n,根據題意,得(n-2)?180=360,解得n=4,則它是四邊形.故填:四.此題主要考查已知多邊形的內角和求邊數,可以轉化為方程的問題來解決.14、10海里.【解析】
本題可以求出甲船行進的距離AC,根據三角函數就可以求出AB,即可求出乙船的路程.【詳解】由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/時的速度沿北偏東60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到達甲船正西方向的B點,∴∠C=30°,∴AB=AC?tan30°=30×=10海里.答:乙船的路程為10海里.故答案為10海里.本題主要考查的是解直角三角形的應用-方向角問題及三角函數的定義,理解方向角的定義是解決本題的關鍵.15、1【解析】
利用公式法可求二次函數y=x2-2x+1的對稱軸.也可用配方法.【詳解】∵-=-=1,∴x=1.故答案為:1本題考查二次函數基本性質中的對稱軸公式;也可用配方法解決.16、2.04×1【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是非負數;當原數的絕對值<1時,n是負數.【詳解】解:204000用科學記數法表示2.04×1.故答案為2.04×1.點睛:本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.三、解答題(共8題,共72分)17、(1)畫圖見解析;(2)畫圖見解析;(3)20【解析】【分析】(1)結合網格特點,連接OA并延長至A1,使OA1=2OA,同樣的方法得到B1,連接A1B1即可得;(2)結合網格特點根據旋轉作圖的方法找到A2點,連接A2B1即可得;(3)根據網格特點可知四邊形AA1B1A2是正方形,求出邊長即可求得面積.【詳解】(1)如圖所示;(2)如圖所示;(3)結合網格特點易得四邊形AA1B1A2是正方形,AA1=,所以四邊形AA1B1A2的面積為:=20,故答案為20.【點睛】本題考查了作圖-位似變換,旋轉變換,能根據位似比、旋轉方向和旋轉角得到關鍵點的對應點是作圖的關鍵.18、(1)①、;②(2)或,.【解析】
據若,則點P為的“特征點”,可得答案;根據若,則點P為的“特征點”,可得,根據等腰直角三角形的性質,可得答案;根據垂線段最短,可得PC最短,根據等腰直角三角形的性質,可得,根據若,則點P為的“特征點”,可得答案.【詳解】解:,,點是的“特征點”;,,點是的“特征點”;,,點不是的“特征點”;故答案為、如圖1,在上,若存在的“特征點”點P,點O到直線的距離.直線交y軸于點E,過O作直線于點H.因為.在中,可知.可得同理可得.的取值范圍是:如圖2,設C點坐標為,直線,.,,,..,線段MN上的所有點都不是的“特征點”,,即,解得或,點C的橫坐標的取值范圍是或,.故答案為:(1)①、;②(2)或,.本題考查一次函數綜合題,解的關鍵是利用若,則點P為的“特征點”;解的關鍵是利用等腰直角三角形的性質得出OE的長;解的關鍵是利用等腰直角三角形的性質得出,又利用了.19、(1)y=﹣x2+2x+3;(2)見解析.【解析】
(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設點Q的坐標為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點,與y軸交于點C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點Q,使得以A、C、Q為頂點的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點B(3,0),點C(0,3),∴拋物線的對稱軸為直線x=1,∴點A的坐標為(﹣1,0),設點Q的坐標為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當AC為斜邊時,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點Q的坐標為(1,1)或(1,2),當AQ為斜邊時,4+t2=10+t2﹣6t+10,解得,t=,∴點Q的坐標為(1,),當CQ時斜邊時,t2﹣6t+10=4+t2+10,解得,t=,∴點Q的坐標為(1,﹣),由上可得,當點Q的坐標是(1,1)、(1,2)、(1,)或(1,﹣)時,使得以A、C、Q為頂點的三角形為直角三角形.本題考查了待定系數法求函數解析式,二次函數的圖像與性質,勾股定理及分類討論的數學思想,熟練掌握待定系數法是解(1)的關鍵,分三種情況討論是解(2)的關鍵.20、(1)8m;(2)答案不唯一【解析】
(1)根據入射角等于反射角可得∠APB=∠CPD,由AB⊥BD、CD⊥BD可得到∠ABP=∠CDP=90°,從而可證得三角形相似,根據相似三角形的性質列出比例式,即可求出CD的長.(2)設計成視角問題求古城墻的高度.【詳解】(1)解:由題意,得∠APB=∠CPD,∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴,∴CD==8.答:該古城墻的高度為8m(2)解:答案不唯一,如:如圖,在距這段古城墻底部am的E處,用高h(m)的測角儀DE測得這段古城墻頂端A的仰角為α.即可測量這段古城墻AB的高度,過點D作DCAB于點C.在Rt△ACD中,∠ACD=90°,tanα=,∴AC=αtanα,∴AB=AC+BC=αtanα+h本題考查相似三角形性質的應用.解題時關鍵是找出相似的三角形,然后根據對應邊成比例列出方程,建立適當的數學模型來解決問題.21、.【解析】
首先判斷∠AED與∠ACB是一對同位角,然后根據已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(內錯角相等,兩直線平行).
∴∠3=∠ADE(兩直線平行,內錯角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代換).
∴DE∥BC(同位角相等,兩直線平行).
∴∠AED=∠ACB(兩直線平行,同位角相等).本題重點考查平行線的性質和判定,難度適中.22、(1)證明見解析;(2)【解析】試題分析:(1)連接OB,由SSS證明△PAO≌△PBO,得出∠PAO=∠PBO=90°即可;(2)連接BE,證明△PAC∽△AOC,證出OC是△ABE的中位線,由三角形中位線定理得出BE=2OC,由△DBE∽△DPO可求出.試題解析:(1)連結OB,則OA=OB.如圖1,∵OP⊥AB,∴AC=BC,∴OP是AB的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理師考試知識點試題及答案
- 大發現福建事業單位考試真相試題及答案
- 2024年微生物檢驗關鍵點試題及答案
- 2024年項目管理師職業發展規劃試題及答案
- 滌綸纖維在智能紡織品與可穿戴設備的應用與前景考核試卷
- 2024年新興項目管理理念試題及答案
- 屋面落水口拆除施工方案
- 棉織造行業大數據分析與商業決策考核試卷
- 2024年農藝師考試知識掌握與實戰應用的協同發展試題及答案
- 窗簾面料的耐光色牢度測試考核試卷
- 2025年廣西壯族自治區南寧市中考一模生物試題(含答案)
- 長江流域大水面生態漁業的發展現狀與發展潛力分析
- 撤資退股合同協議
- 上海市嘉定區聯考2023-2024學年五年級下學期期中數學試題(含答案)
- 賓館住房協議書范本
- 電視臺影視拍攝合同協議
- 統編版(2024)一年級語文下冊12荷葉圓圓 課件
- 免除責任協議書范文
- 人教版(2024)七年級下冊英語期中質量檢測試卷(含答案)
- 熱泵基礎知識培訓課件
- 防中暑課件部隊
評論
0/150
提交評論