云南省元馬中學重點中學2025年初三下學期第一次質量抽測數學試題含解析_第1頁
云南省元馬中學重點中學2025年初三下學期第一次質量抽測數學試題含解析_第2頁
云南省元馬中學重點中學2025年初三下學期第一次質量抽測數學試題含解析_第3頁
云南省元馬中學重點中學2025年初三下學期第一次質量抽測數學試題含解析_第4頁
云南省元馬中學重點中學2025年初三下學期第一次質量抽測數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省元馬中學重點中學2025年初三下學期第一次質量抽測數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,若數軸上的點A,B分別與實數﹣1,1對應,用圓規在數軸上畫點C,則與點C對應的實數是()A.2 B.3 C.4 D.52.甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發4分鐘,在整個步行過程中,甲、乙兩人的距離y(米)與甲出發的時間t(分)之間的關系如圖所示,下列結論:①甲步行的速度為60米/分;②乙走完全程用了32分鐘;③乙用16分鐘追上甲;④乙到達終點時,甲離終點還有300米其中正確的結論有()A.1個 B.2個 C.3個 D.4個3.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°4.某大型企業員工總數為28600人,數據“28600”用科學記數法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×1045.方程的解是()A. B. C. D.6.計算-4-|-3|的結果是()A.-1B.-5C.1D.57.如圖,△ABC的面積為12,AC=3,現將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.108.運用圖形變化的方法研究下列問題:如圖,AB是⊙O的直徑,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積是(

)A. B. C. D.9.如圖是一個由4個相同的正方體組成的立體圖形,它的左視圖為()A. B. C. D.10.已知a+b=4,c﹣d=﹣3,則(b+c)﹣(d﹣a)的值為()A.7 B.﹣7 C.1 D.﹣1二、填空題(共7小題,每小題3分,滿分21分)11.用半徑為6cm,圓心角為120°的扇形圍成一個圓錐,則圓錐的底面圓半徑為_______cm.12.計算的結果是____.13.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F分別是線段BC,AC的中點,連結EF.(1)線段BE與AF的位置關系是,=.(2)如圖2,當△CEF繞點C順時針旋轉a時(0°<a<180°),連結AF,BE,(1)中的結論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當△CEF繞點C順時針旋轉a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉角a的度數.14.已知⊙O的面積為9πcm2,若點O到直線L的距離為πcm,則直線l與⊙O的位置關系是_____.15.《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設有x匹大馬,y匹小馬,根據題意可列方程組為______.16.若關于x、y的二元一次方程組的解是,則關于a、b的二元一次方程組的解是_______.17.如圖,某校根據學生上學方式的一次抽樣調查結果,繪制出一個未完成的扇形統計圖,若該校共有學生1500人,則據此估計步行的有_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠BAC=90°,AB=AC,D為AB邊上一點,連接CD,過點A作AE⊥CD于點E,且交BC于點F,AG平分∠BAC交CD于點G.求證:BF=AG.19.(5分)如圖,直角△ABC內接于⊙O,點D是直角△ABC斜邊AB上的一點,過點D作AB的垂線交AC于E,過點C作∠ECP=∠AED,CP交DE的延長線于點P,連結PO交⊙O于點F.(1)求證:PC是⊙O的切線;(2)若PC=3,PF=1,求AB的長.20.(8分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數圖象的伴侶正方形.如圖,正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.(1)若某函數是一次函數y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數是反比例函數(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數解析式;(3)若某函數是二次函數y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數是奇數還是偶數?_____.(本小題只需直接寫出答案)21.(10分)解不等式組,并寫出其所有的整數解.22.(10分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,FG∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.23.(12分)解方程組:.24.(14分)2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經貿合作協議,某廠準備生產甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區.已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.(1)甲種商品與乙種商品的銷售單價各多少元?(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

由數軸上的點A、B分別與實數﹣1,1對應,即可求得AB=2,再根據半徑相等得到BC=2,由此即求得點C對應的實數.【詳解】∵數軸上的點A,B分別與實數﹣1,1對應,∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應的實數是:1+2=3.故選B.本題考查了實數與數軸,熟記實數與數軸上的點是一一對應的關系是解決本題的關鍵.2、A【解析】【分析】根據題意和函數圖象中的數據可以判斷各個小題中的結論是否正確,從而可以解答本題.【詳解】由圖可得,甲步行的速度為:240÷4=60米/分,故①正確,乙走完全程用的時間為:2400÷(16×60÷12)=30(分鐘),故②錯誤,乙追上甲用的時間為:16﹣4=12(分鐘),故③錯誤,乙到達終點時,甲離終點距離是:2400﹣(4+30)×60=360米,故④錯誤,故選A.【點睛】本題考查了函數圖象,弄清題意,讀懂圖象,從中找到必要的信息是解題的關鍵.3、A【解析】分析:依據AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內角和定理:三角形內角和為180°.解決問題的關鍵是三角形外角性質以及角平分線的定義的運用.4、D【解析】

用科學記數法表示較大的數時,一般形式為a×10﹣n,其中1≤|a|<10,n為整數,據此判斷即可【詳解】28600=2.86×1.故選D.此題主要考查了用科學記數法表示較大的數,一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關鍵5、D【解析】

按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經檢驗x=4是原方程的解故選:D本題考查解分式方程,注意結果要檢驗.6、B【解析】

原式利用算術平方根定義,以及絕對值的代數意義計算即可求出值.【詳解】原式=-2-3=-5,故選:B.此題考查了實數的運算,熟練掌握運算法則是解本題的關鍵.7、D【解析】

過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:

過B作BN⊥AC于N,BM⊥AD于M,

∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,

∴∠C′AB=∠CAB,

∴BN=BM,

∵△ABC的面積等于12,邊AC=3,

∴×AC×BN=12,

∴BN=8,

∴BM=8,

即點B到AD的最短距離是8,

∴BP的長不小于8,

即只有選項D符合,

故選D.本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.8、A【解析】【分析】作直徑CG,連接OD、OE、OF、DG,則根據圓周角定理求得DG的長,證明DG=EF,則S扇形ODG=S扇形OEF,然后根據三角形的面積公式證明S△OCD=S△ACD,S△OEF=S△AEF,則S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓,即可求解.【詳解】作直徑CG,連接OD、OE、OF、DG.∵CG是圓的直徑,∴∠CDG=90°,則DG==8,又∵EF=8,∴DG=EF,∴,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S陰影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圓=π×52=,故選A.【點睛】本題考查扇形面積的計算,圓周角定理.本題中找出兩個陰影部分面積之間的聯系是解題的關鍵.9、B【解析】

根據左視圖的定義,從左側會發現兩個正方形摞在一起.【詳解】從左邊看上下各一個小正方形,如圖故選B.10、C【解析】試題分析:原式去括號可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.故選A.考點:代數式的求值;整體思想.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

解:設圓錐的底面圓半徑為r,根據題意得1πr=,解得r=1,即圓錐的底面圓半徑為1cm.故答案為:1.本題考查圓錐的計算,掌握公式正確計算是解題關鍵.12、【解析】原式=,故答案為.13、(1)互相垂直;;(2)結論仍然成立,證明見解析;(3)135°.【解析】

(1)結合已知角度以及利用銳角三角函數關系求出AB的長,進而得出答案;

(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F分別是線段BC,AC的中點,

∴EC=BC,FC=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.14、相離【解析】

設圓O的半徑是r,根據圓的面積公式求出半徑,再和點0到直線l的距離π比較即可.【詳解】設圓O的半徑是r,則πr2=9π,∴r=3,∵點0到直線l的距離為π,∵3<π,即:r<d,∴直線l與⊙O的位置關系是相離,故答案為:相離.本題主要考查對直線與圓的位置關系的理解和掌握,解此題的關鍵是知道當r<d時相離;當r=d時相切;當r>d時相交.15、【解析】分析:根據題意可以列出相應的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,列出相應的方程組.16、【解析】分析:利用關于x、y的二元一次方程組的解是可得m、n的數值,代入關于a、b的方程組即可求解,利用整體的思想找到兩個方程組的聯系再求解的方法更好.詳解:∵關于x、y的二元一次方程組的解是,∴將解代入方程組可得m=﹣1,n=2∴關于a、b的二元一次方程組整理為:解得:點睛:本題考查二元一次方程組的求解,重點是整體考慮的數學思想的理解運用在此題體現明顯.17、1【解析】

∵騎車的學生所占的百分比是×100%=35%,∴步行的學生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學生1500人,則據此估計步行的有1500×40%=1(人),故答案為1.三、解答題(共7小題,滿分69分)18、見解析【解析】

根據角平分線的性質和直角三角形性質求∠BAF=∠ACG.進一步證明△ABF≌△CAG,從而證明BF=AG.【詳解】證明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG此題重點考查學生對三角形全等證明的理解,熟練掌握兩三角形全等的證明是解題的關鍵.19、(1)證明見解析;(2)1.【解析】試題分析:(1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可;(2)延長PO交圓于G點,由切割線定理求出PG即可解決問題.試題解析:(1)如圖,連接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切線;(2)延長PO交圓于G點,∵PF×PG=PC考點:切線的判定;切割線定理.20、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應的拋物線分別為;;,偶數.【解析】

(1)設正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,

(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,

(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊長為,當點A在x軸負半軸、點B在y軸正半軸上時,設正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時,m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C點坐標為(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函數的解析式為y=,(3)根據題意畫出圖形,如圖所示:過C作CF⊥x軸,垂足為F,過D作DE⊥CF,垂足為E,∴△CED≌△DGB≌△AOB≌△AFC,∵C(3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,則D坐標為(﹣1,3);設過D與C的拋物線的解析式為:y=ax2+b,把D和C的坐標代入得:,解得,∴滿足題意的拋物線的解析式為y=x2+;同理可得D的坐標可以為:(7,﹣3);(﹣4,7);(4,1),;對應的拋物線分別為;;,所求的任何拋物線的伴侶正方形個數為偶數.本題考查了二次函數的綜合題.靈活運用相關知識是解題關鍵.21、不等式組的解集為1≤x<2,該不等式組的整數解為1,2,1.【解析】

先求出不等式組的解集,即可求得該不等式組的整數解.【詳解】由①得,x≥1,由②得,x<2.所以不等式組的解集為1≤x<2,該不等式組的整數解為1,2,1.本題考查的是解一元一次不等式組及求一元一次不等式組的整數解,求不等式的公共解,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.22、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】

(1)根據正方形的性質得到AD∥BC,AB∥CD,AD=CD,根據相似三角形的性質列出比例式,等量代換即可;(2)根據勾股定理求出AE,根據相似三角形的性質計算即可;(3)延長GF交AM于H,根據平行線分線段成比例定理得到,由于BM=BE

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論