




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省上饒市上饒縣2024-2025學年初三第二學期停課不停學階段性檢測試題數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.研究表明某流感病毒細胞的直徑約為0.00000156m,用科學記數法表示這個數是()A.0.156×10-5 B.0.156×105 C.1.56×10-6 D.1.56×1062.已知x﹣2y=3,那么代數式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.93.下列圖形中,可以看作中心對稱圖形的是()A. B. C. D.4.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點B,C作BE⊥AG于點E,CF⊥AG于點F,則AE-GF的值為()A.1 B.2 C.32 D.5.如圖,在矩形ABCD中,AB=5,AD=3,動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點距離之和PA+PB的最小值為()A. B. C.5 D.6.下列二次函數的圖象,不能通過函數y=3x2的圖象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x27.若關于x的一元二次方程(k-1)x2+4x+1=0有兩個不相等的實數根,則k的取值范圍是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>58.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發,它們離甲地的路程y(km)與客車行駛時間x(h)間的函數關系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數有()A.1個 B.2個 C.3個 D.4個9.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.10.如圖,△ABC紙片中,∠A=56,∠C=88°.沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD.則∠BDE的度數為()A.76° B.74° C.72° D.70°11.下列運算正確的是()A.a2?a3=a6B.a3+a2=a5C.(a2)4=a8D.a3﹣a2=a12.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根,則m的取值范圍是_____.14.如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是______.15.若x=-1,則x2+2x+1=__________.16.含角30°的直角三角板與直線,的位置關系如圖所示,已知,∠1=60°,以下三個結論中正確的是____(只填序號).①AC=2BC②△BCD為正三角形③AD=BD17.若分式x-118.在△ABC中,AB=13cm,AC=10cm,BC邊上的高為11cm,則△ABC的面積為______cm1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發,結果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?20.(6分)如圖所示:△ABC是等腰三角形,∠ABC=90°.(1)尺規作圖:作線段AB的垂直平分線l,垂足為H.(保留作圖痕跡,不寫作法);(2)垂直平分線l交AC于點D,求證:AB=2DH.21.(6分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數字1和1.B布袋中有三個完全相同的小球,分別標有數字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標有的數字為x,再從B布袋中隨機取出一個小球,記錄其標有的數字為y,這樣就確定點Q的一個坐標為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;(1)求點Q落在直線y=﹣x﹣1上的概率.22.(8分)某食品廠生產一種半成品食材,產量百千克與銷售價格元千克滿足函數關系式,從市場反饋的信息發現,該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數關系,如下表:銷售價格元千克2410市場需求量百千克12104已知按物價部門規定銷售價格x不低于2元千克且不高于10元千克求q與x的函數關系式;當產量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;當產量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質期短而只能廢棄若該半成品食材的成本是2元千克.求廠家獲得的利潤百元與銷售價格x的函數關系式;當廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本23.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.24.(10分)如圖,在平面直角坐標系中,拋物線y=﹣x2﹣2ax與x軸相交于O、A兩點,OA=4,點D為拋物線的頂點,并且直線y=kx+b與該拋物線相交于A、B兩點,與y軸相交于點C,B點的橫坐標是﹣1.(1)求k,a,b的值;(2)若P是直線AB上方拋物線上的一點,設P點的橫坐標是t,△PAB的面積是S,求S關于t的函數關系式,并直接寫出自變量t的取值范圍;(3)在(2)的條件下,當PB∥CD時,點Q是直線AB上一點,若∠BPQ+∠CBO=180°,求Q點坐標.25.(10分)某廠按用戶的月需求量(件)完成一種產品的生產,其中.每件的售價為18萬元,每件的成本(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量(件)成反比.經市場調研發現,月需求量與月份(為整數,)符合關系式(為常數),且得到了表中的數據.月份(月)
1
2
成本(萬元/件)
11
12
需求量(件/月)
120
100
(1)求與滿足的關系式,請說明一件產品的利潤能否是12萬元;(2)求,并推斷是否存在某個月既無盈利也不虧損;(3)在這一年12個月中,若第個月和第個月的利潤相差最大,求.26.(12分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.27.(12分)雅安地震,某地駐軍對道路進行清理.該地駐軍在清理道路的工程中出色完成了任務.這是記者與駐軍工程指揮部的一段對話:記者:你們是用9天完成4800米長的道路清理任務的?指揮部:我們清理600米后,采用新的清理方式,這樣每天清理長度是原來的2倍.通過這段對話,請你求出該地駐軍原來每天清理道路的米數.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】解:,故選C.2、A【解析】
解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.3、B【解析】
根據中心對稱圖形的概念求解.【詳解】解:A、不是中心對稱圖形,故此選項錯誤;
B、是中心對稱圖形,故此選項正確;
C、不是中心對稱圖形,故此選項錯誤;
D、不是中心對稱圖形,故此選項錯誤.
故選:B.此題主要考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.4、D【解析】
設AE=x,則AB=2x,由矩形的性質得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結果.【詳解】設AE=x,
∵四邊形ABCD是矩形,
∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.本題考查了矩形的性質、等腰直角三角形的判定與性質,勾股定理;熟練掌握矩形的性質和等腰直角三角形的性質,并能進行推理計算是解決問題的關鍵.5、D【解析】解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE就是所求的最短距離.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值為.故選D.6、D【解析】分析:根據平移變換只改變圖形的位置不改變圖形的形狀與大小對各選項分析判斷后利用排除法求解:A、y=3x2的圖象向上平移2個單位得到y=3x2+2,故本選項錯誤;B、y=3x2的圖象向右平移1個單位得到y=3(x﹣1)2,故本選項錯誤;C、y=3x2的圖象向右平移1個單位,向上平移2個單位得到y=3(x﹣1)2+2,故本選項錯誤;D、y=3x2的圖象平移不能得到y=2x2,故本選項正確.故選D.7、B【解析】試題解析:∵關于x的一元二次方程方程有兩個不相等的實數根,∴,即,解得:k<5且k≠1.故選B.8、D【解析】
根據題意和函數圖象中的數據可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.本題考查一次函數的應用,解答本題的關鍵是明確題意,利用數形結合的思想解答.9、C【解析】
由平面圖形的折疊及正方形的展開圖結合本題選項,一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題10、B【解析】
直接利用三角形內角和定理得出∠ABC的度數,再利用翻折變換的性質得出∠BDE的度數.【詳解】解:∵∠A=56°,∠C=88°,
∴∠ABC=180°-56°-88°=36°,
∵沿過點B的直線折疊這個三角形,使點C落在AB邊上的點E處,折痕為BD,
∴∠CBD=∠DBE=18°,∠C=∠DEB=88°,
∴∠BDE=180°-18°-88°=74°.
故選:B.此題主要考查了三角形內角和定理,正確掌握三角形內角和定理是解題關鍵.11、C【解析】
根據同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;合并同類項的法則:把同類項的系數相加,所得結果作為系數,字母和字母的指數不變;冪的乘方法則:底數不變,指數相乘進行計算即可.【詳解】A、a2?a3=a5,故原題計算錯誤;B、a3和a2不是同類項,不能合并,故原題計算錯誤;C、(a2)4=a8,故原題計算正確;D、a3和a2不是同類項,不能合并,故原題計算錯誤;故選:C.此題主要考查了冪的乘方、同底數冪的乘法,以及合并同類項,關鍵是掌握計算法則.12、C【解析】
依據題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據三角形的三邊關系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、m≤1【解析】
根據一元二次方程有實數根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數根;△=0,方程有兩個相等的實數根;△<0,方程沒有實數根是本題的關鍵.14、1【解析】
首先證明AB=AC=a,根據條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長AD交⊙D于P′,此時AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.圓外一點到圓上一點的距離最大值為點到圓心的距離加半徑,最小值為點到圓心的距離減去半徑.15、2【解析】
先利用完全平方公式對所求式子進行變形,然后代入x的值進行計算即可.【詳解】∵x=-1,∴x2+2x+1=(x+1)2=(-1+1)2=2,故答案為:2.本題考查了代數式求值,涉及了因式分解,二次根式的性質等,熟練掌握相關知識是解題的關鍵.16、②③【解析】
根據平行線的性質以及等邊三角形的性質即可求出答案.【詳解】由題意可知:∠A=30°,∴AB=2BC,故①錯誤;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等邊三角形,故②正確;∵△BCD是等邊三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正確.故答案為②③.本題考查了平行的性質以及等邊三角形的性質,解題的關鍵是熟練運用平行線的性質,等邊三角形的性質,含30度角的直角三角形的性質,本題屬于中等題型.17、1【解析】試題分析:根據題意,得|x|-1=0,且x-1≠0,解得x=-1.考點:分式的值為零的條件.18、2或2.【解析】試題分析:分兩種情況討論:銳角三角形和鈍角三角形,根據勾股定理求得BD=16,CD=5,再由圖形求出BC,在銳角三角形中,BC=BD+CD=2,在鈍角三角形中,BC=CD-BD=2.故答案為2或2.考點:勾股定理三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、自行車速度為16千米/小時,汽車速度為40千米/小時.【解析】
設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,根據甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發,結果同時到達,即可列方程求解.【詳解】設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,由題意得,解得x=16,經檢驗x=16適合題意,2.5x=40,答:自行車速度為16千米/小時,汽車速度為40千米/小時.20、(1)見解析;(2)證明見解析.【解析】
(1)利用線段垂直平分線的作法,分別以A,B為端點,大于為半徑作弧,得出直線l即可;
(2)利用利用平行線的性質以及平行線分線段成比例定理得出點D是AC的中點,進而得出答案.【詳解】解:(1)如圖所示:直線l即為所求;
(2)證明:∵點H是AB的中點,且DH⊥AB,∴DH∥BC,∴點D是AC的中點,∵∴AB=2DH.考查作圖—基本作圖,線段垂直平分線的性質,等腰三角形的性質等,熟練掌握垂直平分線的性質是解題的性質.21、(1)見解析;(1)【解析】試題分析:先用列表法寫出點Q的所有可能坐標,再根據概率公式求解即可.(1)由題意得
1
1
-1
(1,-1)
(1,-1)
-1
(1,-1)
(1,-1)
-2
(1,-2)
(1,-2)
(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=?x?1上)=.考點:概率公式點評:解題的關鍵是熟練掌握概率公式:概率=所求情況數與總情況數的比值.22、(1);(2);(3);當時,廠家獲得的利潤y隨銷售價格x的上漲而增加.【解析】
(1)直接利用待定系數法求出一次函數解析式進而得出答案;(2)由題意可得:p≤q,進而得出x的取值范圍;(3)①利用頂點式求出函數最值得出答案;②利用二次函數的增減性得出答案即可.【詳解】(1)設q=kx+b(k,b為常數且k≠0),當x=2時,q=12,當x=4時,q=10,代入解析式得:,解得:,∴q與x的函數關系式為:q=﹣x+14;(2)當產量小于或等于市場需求量時,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①當產量大于市場需求量時,可得4<x≤10,由題意得:廠家獲得的利潤是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵當x時,y隨x的增加而增加.又∵產量大于市場需求量時,有4<x≤10,∴當4<x時,廠家獲得的利潤y隨銷售價格x的上漲而增加.本題考查了待定系數法求一次函數解析式以及二次函數最值求法等知識,正確得出二次函數解析式是解題的關鍵.23、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據平行四邊形的性質得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據平行線的判定得出AD∥BC,根據平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.24、(1)k=1、a=2、b=4;(2)s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;(3)Q(﹣,)【解析】
(1)根據題意可得A(-4,0)代入拋物線解析式可得a,求出拋物線解析式,根據B的橫坐標可求B點坐標,把A,B坐標代入直線解析式,可求k,b(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,設出P點坐標,可求出N點坐標,即可以用t表示S.(3)由PB∥CD,可求P點坐標,連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,根據P的坐標,可得∠POA=45°,由OA=OC可得∠CAO=45°則PO⊥AB,根據拋物線的對稱性可知R在對稱軸上.設Q點坐標,根據△BOR∽△PQS,可求Q點坐標.【詳解】(1)∵OA=4∴A(﹣4,0)∴﹣16+8a=0∴a=2,∴y=﹣x2﹣4x,當x=﹣1時,y=﹣1+4=3,∴B(﹣1,3),將A(﹣4,0)B(﹣1,3)代入函數解析式,得,解得,直線AB的解析式為y=x+4,∴k=1、a=2、b=4;(2)過P點作PN⊥OA于N,交AB于M,過B點作BH⊥PN,如圖1,由(1)知直線AB是y=x+4,拋物線是y=﹣x2﹣4x,∴當x=t時,yP=﹣t2﹣4t,yN=t+4PN=﹣t2﹣4t﹣(t+4)=﹣t2﹣5t﹣4,BH=﹣1﹣t,AM=t﹣(﹣4)=t+4,S△PAB=PN(AM+BH)=(﹣t2﹣5t﹣4)(﹣1﹣t+t+4)=(﹣t2﹣5t﹣4)×3,化簡,得s=﹣t2﹣t﹣6,自變量t的取值范圍是﹣4<t<﹣1;∴﹣4<t<﹣1(3)y=﹣x2﹣4x,當x=﹣2時,y=4即D(﹣2,4),當x=0時,y=x+4=4,即C(0,4),∴CD∥OA∵B(﹣1,3).當y=3時,x=﹣3,∴P(﹣3,3),連接OP,交AC于點R,過P點作PN⊥OA于M,交AB于N,過D點作DT⊥OA于T,如圖2,可證R在DT上∴PN=ON=3∴∠PON=∠OPN=45°∴∠BPR=∠PON=45°,∵OA=OC,∠AOC=90°∴∠PBR=∠BAO=45°,∴PO⊥AC∵∠BPQ+∠CBO=180,∴∠BPQ=∠BCO+∠BOC過點Q作QS⊥PN,垂足是S,∴∠SPQ=∠BOR∴tan∠SPQ=tan∠BOR,可求BR=,OR=2,設Q點的橫坐標是m,當x=m時y=m+4,∴SQ=m+3,PS=﹣m﹣1∴,解得m=﹣.當x=﹣時,y=,Q(﹣,).本題考查二次函數綜合題、一次函數的應用、相似三角形的判定和性質、全等三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識,學會添加常用輔助線,構造特殊四邊形解決問題.25、(1),不可能;(2)不存在;(3)1或11.【解析】試題分析:(1)根據每件的成本y(萬元)是基礎價與浮動價的和,其中基礎價保持不變,浮動價與月需求量x(件)成反比,結合表格,用待定系數法求y與x之間的函數關系式,再列方程求解,檢驗所得結果是還符合題意;(2)將表格中的n,對應的x值,代入到,求出k,根據某個月既無盈利也不虧損,得到一個關于n的一元二次方程,判斷根的情況;(3)用含m的代數式表示出第m個月,第(m+1)個月的利潤,再對它們的差的情況討論.試題解析:(1)由題意設,由表中數據,得解得∴.由題意,若,則.∵x>0,∴.∴不可能.(2)將n=1,x=120代入,得120=2-2k+9k+27.解得k=13.將n=2,x=100代入也符合.∴k=13.由題意,得18=6+,求得x=50.∴50=,即.∵,∴方程無實數根.∴不存在.(3)第m個月的利潤為w==;∴第(m+1)個月的利潤為W′=.若W≥W′,W-W′=48(6-m),m取
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設計驗證承包協議
- 鐵路旅客運輸服務折返站和終到退乘作業課件
- 2025年特種設備作業人員移動式壓力容器充裝R2證考試題庫
- 中國交通文化課件英文版
- 中專職業形象課件下載
- 地下車位買賣合同模板規范
- 員工股票期權授予合同模板
- 2025年度供暖工程承包合同
- 購銷合同完整模板
- 股權轉讓協議書2025
- 圍墻拆除工程施工方案
- 性發育異常疾病課件
- 動態分析與設計實驗報告總結
- 清水河儲能電站施工方案設計
- 從汽車檢測看低空飛行器檢測發展趨勢
- 《短視頻拍攝與制作》課件-3短視頻中期拍攝
- 中鐵投資公司招聘筆試題
- 2024年十堰市中小學教師職稱晉升水平能力測試題附答案
- 中藥熱奄包在急性胃炎治療中的應用研究
- 觀光小火車方案
- 《資本論》思維導圖
評論
0/150
提交評論