西藏林芝市一中2025屆高三下學期開學考試數學試題理試題含解析_第1頁
西藏林芝市一中2025屆高三下學期開學考試數學試題理試題含解析_第2頁
西藏林芝市一中2025屆高三下學期開學考試數學試題理試題含解析_第3頁
西藏林芝市一中2025屆高三下學期開學考試數學試題理試題含解析_第4頁
西藏林芝市一中2025屆高三下學期開學考試數學試題理試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

西藏林芝市一中2025屆高三下學期開學考試數學試題理試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數x,y滿足約束條件,若的最大值為2,則實數k的值為()A.1 B. C.2 D.2.集合的真子集的個數為()A.7 B.8 C.31 D.323.如圖,正方形網格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對4.設為等差數列的前項和,若,,則的最小值為()A. B. C. D.5.已知函數,則的最小值為()A. B. C. D.6.設集合,,則()A. B.C. D.7.網絡是一種先進的高頻傳輸技術,我國的技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月8.已知復數滿足:(為虛數單位),則()A. B. C. D.9.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.410.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.11.給定下列四個命題:①若一個平面內的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④12.已知實數集,集合,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.14.函數的值域為_____.15.已知二項式的展開式中各項的二項式系數和為512,其展開式中第四項的系數__________.16.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知凸邊形的面積為1,邊長,,其內部一點到邊的距離分別為.求證:.18.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.19.(12分)已知函數,直線為曲線的切線(為自然對數的底數).(1)求實數的值;(2)用表示中的最小值,設函數,若函數為增函數,求實數的取值范圍.20.(12分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.21.(12分)已知函數(,),且對任意,都有.(Ⅰ)用含的表達式表示;(Ⅱ)若存在兩個極值點,,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點的個數,并說明理由.22.(10分)已知滿足,且,求的值及的面積.(從①,②,③這三個條件中選一個,補充到上面問題中,并完成解答.)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

畫出約束條件的可行域,利用目標函數的幾何意義,求出最優解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.本題考查由目標函數最值求解參數值,數形結合思想,分類討論是解題的關鍵,屬于中檔題.2.A【解析】

計算,再計算真子集個數得到答案.【詳解】,故真子集個數為:.故選:.本題考查了集合的真子集個數,意在考查學生的計算能力.3.C【解析】

畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題.4.C【解析】

根據已知條件求得等差數列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C本小題主要考查等差數列通項公式和前項和公式的基本量計算,考查等差數列前項和最值的求法,屬于基礎題.5.C【解析】

利用三角恒等變換化簡三角函數為標準正弦型三角函數,即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.本題考查利用降冪擴角公式、輔助角公式化簡三角函數,以及求三角函數的最值,屬綜合基礎題.6.A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.7.C【解析】

根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.8.A【解析】

利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.9.C【解析】

方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.10.D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規劃.11.D【解析】

利用線面平行和垂直,面面平行和垂直的性質和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.12.A【解析】

可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A本題考查了集合的補集和交集的混合運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.本題主要考查了正弦定理,正弦函數圖象和性質,考查了轉化思想,屬于基礎題.14.【解析】

利用配方法化簡式子,可得,然后根據觀察法,可得結果.【詳解】函數的定義域為所以函數的值域為故答案為:本題考查的是用配方法求函數的值域問題,屬基礎題。15.【解析】

先令可得其展開式各項系數的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數為,故答案為:此題考查二項式定理的應用,解題時需要區分展開式中各項系數的和與各二項式系數和,屬于基礎題.16.【解析】

甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.證明見解析【解析】

由已知,易得,所以利用柯西不等式和基本不等式即可證明.【詳解】因為凸邊形的面積為1,所以,所以(由柯西不等式得)(由均值不等式得)本題考查利用柯西不等式、基本不等式證明不等式的問題,考查學生對不等式靈活運用的能力,是一道容易題.18.(1)不在,證明見詳解;(2)【解析】

(1)假設直線方程,并于拋物線方程聯立,結合韋達定理,計算,可得,然后驗證可得結果.(2)分別計算線段中垂線的方程,然后聯立,根據(1)的條件可得點的軌跡方程,然后可得焦點,結合拋物線定義可得,計算可得結果.【詳解】(1)設直線方程,根據題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以本題考查直線于拋物線的綜合應用,第(1)問中難點在于計算處,第(2)問中關鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯立方程,結合韋達定理,屬難題.19.(1);(2).【解析】

試題分析:(1)先求導,然后利用導數等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設與交點的橫坐標為,利用導數求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設直線與曲線切于點,則,解得,所以的值為1.(2)記函數,下面考察函數的符號,對函數求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調遞減.,∴,又曲線在上連續不間斷,所以由函數的零點存在性定理及其單調性知唯一的,使.∴;,,∴,從而,∴,由函數為增函數,且曲線在上連續不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數為增函數.故實數的取值范圍是考點:函數導數與不等式.【方法點晴】函數導數問題中,和切線有關的題目非常多,我們只要把握住關鍵點:一個是切點,一個是斜率,切點即在原來函數圖象上,也在切線上;斜率就是導數的值.根據這兩點,列方程組,就能解決.本題第二問我們采用分層推進的策略,先求得的表達式,然后再求得的表達式,我們就可以利用導數這個工具來求的取值范圍了.20.(1),(2)(3)【解析】

(1)假設公差,公比,根據等差數列和等比數列的通項公式,化簡式子,可得,,然后利用公式法,可得結果.(2)根據(1)的結論,利用錯位相減法求和,可得結果.(3)計算出,代值計算并化簡,可得結果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即本題主要考查等差數列和等比數列的綜合應用,以及利用錯位相減法求和,屬基礎題.21.(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關系,求函數導數,要求函數有兩個極值點,只需在內有兩個實根,利用一元二次方程的根的分布求出的取值范圍,再根據函數圖象和極值的大小判斷零點的個數.試題解析:(Ⅰ)根據題意:令,可得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論