遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題含解析_第1頁
遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題含解析_第2頁
遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題含解析_第3頁
遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題含解析_第4頁
遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-2.把函數的圖象向右平移個單位長度,得到函數的圖象,若函數是偶函數,則實數的最小值是()A. B. C. D.3.已知數列的前n項和為,,且對于任意,滿足,則()A. B. C. D.4.在復平面內,復數(,)對應向量(O為坐標原點),設,以射線Ox為始邊,OZ為終邊旋轉的角為,則,法國數學家棣莫弗發現了棣莫弗定理:,,則,由棣莫弗定理可以導出復數乘方公式:,已知,則()A. B.4 C. D.165.設,命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根6.是恒成立的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知等差數列的公差不為零,且,,構成新的等差數列,為的前項和,若存在使得,則()A.10 B.11 C.12 D.138.下列與的終邊相同的角的表達式中正確的是()A.2kπ+45°(k∈Z) B.k·360°+π(k∈Z)C.k·360°-315°(k∈Z) D.kπ+(k∈Z)9.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.10.已知函數,若,則的最小值為()參考數據:A. B. C. D.11.已知集合,集合,則A. B.或C. D.12.執行程序框圖,則輸出的數值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,且,則________.14.齊王與田忌賽馬,田忌的上等馬優于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬.現從雙方的馬匹中隨機選一匹進行一場比賽,則田忌的馬獲勝的概率為__________.15.已知函數函數,其中,若函數恰有4個零點,則的取值范圍是__________.16.已知數列為等比數列,,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知各項均不相等的等差數列的前項和為,且成等比數列.(1)求數列的通項公式;(2)求數列的前項和.18.(12分)在數列中,,(1)求數列的通項公式;(2)若存在,使得成立,求實數的最小值19.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.20.(12分)如圖,在四棱柱中,底面為菱形,.(1)證明:平面平面;(2)若,是等邊三角形,求二面角的余弦值.21.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長,若不存在,請說明理由.22.(10分)車工劉師傅利用數控車床為某公司加工一種高科技易損零件,對之前加工的100個零件的加工時間進行統計,結果如下:加工1個零件用時(分鐘)20253035頻數(個)15304015以加工這100個零件用時的頻率代替概率.(1)求的分布列與數學期望;(2)劉師傅準備給幾個徒弟做一個加工該零件的講座,用時40分鐘,另外他打算在講座前、講座后各加工1個該零件作示范.求劉師傅講座及加工2個零件作示范的總時間不超過100分鐘的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.2.A【解析】

先求出的解析式,再求出的解析式,根據三角函數圖象的對稱性可求實數滿足的等式,從而可求其最小值.【詳解】的圖象向右平移個單位長度,所得圖象對應的函數解析式為,故.令,,解得,.因為為偶函數,故直線為其圖象的對稱軸,令,,故,,因為,故,當時,.故選:A.本題考查三角函數的圖象變換以及三角函數的圖象性質,注意平移變換是對自變量做加減,比如把的圖象向右平移1個單位后,得到的圖象對應的解析式為,另外,如果為正弦型函數圖象的對稱軸,則有,本題屬于中檔題.3.D【解析】

利用數列的遞推關系式判斷求解數列的通項公式,然后求解數列的和,判斷選項的正誤即可.【詳解】當時,.所以數列從第2項起為等差數列,,所以,,.,,.故選:.本題考查數列的遞推關系式的應用、數列求和以及數列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.4.D【解析】

根據復數乘方公式:,直接求解即可.【詳解】,.故選:D本題考查了復數的新定義題目、同時考查了復數模的求法,解題的關鍵是理解棣莫弗定理,將復數化為棣莫弗定理形式,屬于基礎題.5.A【解析】

只需將“存在”改成“任意”,有實根改成無實根即可.【詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結論,是一道基礎題.6.A【解析】

設成立;反之,滿足,但,故選A.7.D【解析】

利用等差數列的通項公式可得,再利用等差數列的前項和公式即可求解.【詳解】由,,構成等差數列可得即又解得:又所以時,.故選:D本題考查了等差數列的通項公式、等差數列的前項和公式,需熟記公式,屬于基礎題.8.C【解析】

利用終邊相同的角的公式判斷即得正確答案.【詳解】與的終邊相同的角可以寫成2kπ+(k∈Z),但是角度制與弧度制不能混用,所以只有答案C正確.故答案為C(1)本題主要考查終邊相同的角的公式,意在考查學生對該知識的掌握水平和分析推理能力.(2)與終邊相同的角=+其中.9.A【解析】

設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.10.A【解析】

首先的單調性,由此判斷出,由求得的關系式.利用導數求得的最小值,由此求得的最小值.【詳解】由于函數,所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構造函數,.構造函數,,所以在區間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區間上遞增,在區間上遞減.而,所以在區間上的最小值為,也即的最小值為,所以的最小值為.故選:A本小題主要考查利用導數研究函數的最值,考查分段函數的圖像與性質,考查化歸與轉化的數學思想方法,屬于難題.11.C【解析】

由可得,解得或,所以或,又,所以,故選C.12.C【解析】

由題知:該程序框圖是利用循環結構計算并輸出變量的值,計算程序框圖的運行結果即可得到答案.【詳解】,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,滿足條件,,,,,不滿足條件,輸出.故選:C本題主要考查程序框圖中的循環結構,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據垂直向量的坐標表示可得出關于實數的等式,即可求得實數的值.【詳解】,且,則,解得.故答案為:.本題考查利用向量垂直求參數,涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.14..【解析】分析:由題意結合古典概型計算公式即可求得題中的概率值.詳解:由題意可知了,比賽可能的方法有種,其中田忌可獲勝的比賽方法有三種:田忌的中等馬對齊王的下等馬,田忌的上等馬對齊王的下等馬,田忌的上等馬對齊王的中等馬,結合古典概型公式可得,田忌的馬獲勝的概率為.點睛:有關古典概型的概率問題,關鍵是正確求出基本事件總數和所求事件包含的基本事件數.(1)基本事件總數較少時,用列舉法把所有基本事件一一列出時,要做到不重復、不遺漏,可借助“樹狀圖”列舉.(2)注意區分排列與組合,以及計數原理的正確使用.15.【解析】∵,∴,∵函數y=f(x)?g(x)恰好有四個零點,∴方程f(x)?g(x)=0有四個解,即f(x)+f(2?x)?b=0有四個解,即函數y=f(x)+f(2?x)與y=b的圖象有四個交點,,作函數y=f(x)+f(2?x)與y=b的圖象如下,,結合圖象可知,<b<2,故答案為.點睛:(1)求分段函數的函數值,要先確定要求值的自變量屬于哪一段區間,然后代入該段的解析式求值,當出現f(f(a))的形式時,應從內到外依次求值.(2)當給出函數值求自變量的值時,先假設所求的值在分段函數定義區間的各段上,然后求出相應自變量的值,切記要代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.16.81【解析】

設數列的公比為,利用等比數列通項公式求出,代入等比數列通項公式即可求解.【詳解】設數列的公比為,由題意知,因為,由等比數列通項公式可得,,解得,由等比數列通項公式可得,.故答案為:本題考查等比數列通項公式;考查運算求解能力;屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】試題分析:(1)設公差為,列出關于的方程組,求解的值,即可得到數列的通項公式;(2)由(1)可得,即可利用裂項相消求解數列的和.試題解析:(1)設公差為.由已知得,解得或(舍去),所以,故.(2),考點:等差數列的通項公式;數列的求和.18.(1);(2)【解析】

(1)由得,兩式相減可得是從第二項開始的等比數列,由此即可求出答案;(2),分類討論,當時,,作商法可得數列為遞增數列,由此可得答案,【詳解】解:(1)因為,,兩式相減得:,即,是從第二項開始的等比數列,∵∴,則,;(2),當時,;當時,設遞增,,所以實數的最小值.本題主要考查地推數列的應用,屬于中檔題.19.(1)極小值為,極大值為.(2)【解析】

(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.20.(1)證明見解析(2)【解析】

(1)根據面面垂直的判定定理可知,只需證明平面即可.由為菱形可得,連接和與的交點,由等腰三角形性質可得,即能證得平面;(2)由題意知,平面,可建立空間直角坐標系,以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,再分別求出平面的法向量,平面的法向量,即可根據向量法求出二面角的余弦值.【詳解】(1)如圖,設與相交于點,連接,又為菱形,故,為的中點.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等邊三角形,可得,故平面,所以,,兩兩垂直.如圖以為坐標原點,所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.不妨設,則,,則,,,,,,設為平面的法向量,則即可取,設為平面的法向量,則即可取,所以.所以二面角的余弦值為0.本題主要考查線面垂直的判定定理,面面垂直的判定定理的應用,以及利用向量法求二面角,意在考查學生的直觀想象能力,邏輯推理能力和數學運算能力,屬于基礎題.21.(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系,由題意可得平面的法向量,且,據此有,則平面.(Ⅱ)由題意可得平面的法向量,結合(Ⅰ)的結論可得,即平面與平面所成銳二面角的余弦值為.(Ⅲ)設,,則,而平面的法向量,據此可得,解方程有或.據此計算可得.試題解析:(Ⅰ)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系,如圖,則,,,,∴,,設平面的法向量,∴不妨設,又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,設平面的法向量,∴不妨設,∴,∴平面與平面所成銳二面角的余弦值為.(Ⅲ)設,,∴,∴,又∵平面的法向量,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論