




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市濱河區達標名校2024-2025學年初三下期終教學質量監控試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正確的是()A.①②③ B.①②④ C.①③④ D.②③④2.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°3.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥34.如圖,在正方形OABC中,點A的坐標是(﹣3,1),點B的縱坐標是4,則B,C兩點的坐標分別是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)5.關于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一個根為0,則a值為()A.1 B.﹣1 C.±1 D.06.下列說法不正確的是()A.選舉中,人們通常最關心的數據是眾數B.從1,2,3,4,5中隨機抽取一個數,取得奇數的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定D.數據3,5,4,1,﹣2的中位數是47.下列解方程去分母正確的是()A.由x3B.由x-22C.由y3D.由y+128.下列各式計算正確的是()A.a4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a12÷a3=a49.計算結果是()A.0 B.1 C.﹣1 D.x10.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.11.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m12.春季是傳染病多發的季節,積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內每立方米空氣中含藥量與藥物在空氣中的持續時間之間的函數關系,在打開門窗通風前分別滿足兩個一次函數,在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經過集中噴灑藥物,室內空氣中的含藥量最高達到B.室內空氣中的含藥量不低于的持續時間達到了C.當室內空氣中的含藥量不低于且持續時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內空氣中的含藥量低于時,對人體才是安全的,所以從室內空氣中的含藥量達到開始,需經過后,學生才能進入室內二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,將邊BC沿斜邊上的中線CD折疊到CB′,若∠B=48°,則∠ACB′=_____.14.在△ABC中,點D在邊BC上,且BD:DC=1:2,如果設=,=,那么等于__(結果用、的線性組合表示).15.如圖所示,擺第一個“小屋子”要5枚棋子,擺第二個要11枚棋子,擺第三個要17枚棋子,則擺第30個“小屋子”要___枚棋子.16.如圖,A、B是反比例函數y=(k>0)圖象上的點,A、B兩點的橫坐標分別是a、2a,線段AB的延長線交x軸于點C,若S△AOC=1.則k=_______.17.在一次數學測試中,同年級人數相同的甲、乙兩個班的成績統計如下表:班級平均分中位數方差甲班乙班數學老師讓同學們針對統計的結果進行一下評估,學生的評估結果如下:這次數學測試成績中,甲、乙兩個班的平均水平相同;甲班學生中數學成績95分及以上的人數少;乙班學生的數學成績比較整齊,分化較小.上述評估中,正確的是______填序號18.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:﹣22+|﹣4|+()-1+2tan60°(2)求不等式組的解集.20.(6分)如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF,求證:AF=DC;若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結論.21.(6分)先化簡,再求值,,其中x=1.22.(8分)已知拋物線y=x2+bx+c(b,c是常數)與x軸相交于A,B兩點(A在B的左側),與y軸交于點C.(1)當A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標;(2)P(m,t)為拋物線上的一個動點.①當點P關于原點的對稱點P′落在直線BC上時,求m的值;②當點P關于原點的對稱點P′落在第一象限內,P′A2取得最小值時,求m的值及這個最小值.23.(8分)如圖,二次函數y=x2+bx+c的圖象交x軸于A、D兩點,并經過B點,已知A點坐標是(2,0),B點坐標是(8,6).求二次函數的解析式;求函數圖象的頂點坐標及D點的坐標;二次函數的對稱軸上是否存在一點C,使得△CBD的周長最小?若C點存在,求出C點的坐標;若C點不存在,請說明理由.24.(10分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.25.(10分)解分式方程:26.(12分)如圖,△ABC內接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,與過點C的⊙O的切線交于點D.若AC=4,BC=2,求OE的長.試判斷∠A與∠CDE的數量關系,并說明理由.27.(12分)如圖1,是一個材質均勻可自由轉動的轉盤,轉盤的四個扇形面積相等,分別有數字1,2,3,1.如圖2,正方形ABCD頂點處各有一個圈.跳圈游戲的規則為:游戲者每轉動轉盤一次,當轉盤停止運動時,指針所落扇形中的數字是幾(當指針落在四個扇形的交線上時,重新轉動轉盤),就沿正方形的邊順時針方向連續跳幾個邊長.如:若從圖A起跳,第一次指針所落扇形中的數字是3,就順時針連線跳3個邊長,落到圈D;若第二次指針所落扇形中的數字是2,就從D開始順時針續跳2個邊長,落到圈B;……設游戲者從圈A起跳.(1)嘉嘉隨機轉一次轉盤,求落回到圈A的概率P1;(2)琪琪隨機轉兩次轉盤,用列表法求最后落回到圈A的概率P2,并指出她與嘉嘉落回到圈A的可能性一樣嗎?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
解:根據作圖過程,利用線段垂直平分線的性質對各選項進行判斷:根據作圖過程可知:PB=CP,∵D為BC的中點,∴PD垂直平分BC,∴①ED⊥BC正確.∵∠ABC=90°,∴PD∥AB.∴E為AC的中點,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正確;③EB平分∠AED錯誤;④ED=AB正確.∴正確的有①②④.故選B.考點:線段垂直平分線的性質.2、A【解析】
根據∠ABD=35°就可以求出的度數,再根據,可以求出,因此就可以求得的度數,從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數都是70°,∵BD為直徑,∴的度數是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數也是110°,∴的度數是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.本題考查了等腰三角形性質、圓周角定理,主要考查學生的推理能力.3、C【解析】
根據“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.考查了解不等式組,根據求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.4、A【解析】
作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,由AAS證明△AOE≌△OCD,得出AE=OD,OE=CD,由點A的坐標是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【詳解】解:如圖所示:作CD⊥x軸于D,作AE⊥x軸于E,作BF⊥AE于F,則∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.∵四邊形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.∵點A的坐標是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).故選A.本題考查了正方形的性質、全等三角形的判定與性質、坐標與圖形性質;熟練掌握正方形的性質,證明三角形全等是解決問題的關鍵.5、B【解析】
根據一元二次方程的定義和一元二次方程的解的定義得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【詳解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是關于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故選:B.本題考查了對一元二次方程的定義,一元二次方程的解等知識點的理解和運用,注意根據已知得出a﹣1≠0,a2﹣1=0,不要漏掉對一元二次方程二次項系數不為0的考慮.6、D【解析】試題分析:A、選舉中,人們通常最關心的數據為出現次數最多的數,所以A選項的說法正確;B、從1,2,3,4,5中隨機抽取一個數,由于奇數由3個,而偶數有2個,則取得奇數的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定,所以C選項的說法正確;D、數據3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數是3,所以D選項的說法錯誤.故選D.考點:隨機事件發生的可能性(概率)的計算方法7、D【解析】
根據等式的性質2,A方程的兩邊都乘以6,B方程的兩邊都乘以4,C方程的兩邊都乘以15,D方程的兩邊都乘以6,去分母后判斷即可.【詳解】A.由x3-1=1-x2,得:2B.由x-22-x4=-1C.由y3-1=y5,得:5D.由y+12=y3+1故選D.本題考查了解一元一次方程,注意在去分母時,方程兩端同乘各分母的最小公倍數時,不要漏乘沒有分母的項,同時要把分子(如果是一個多項式)作為一個整體加上括號.8、C【解析】
根據同底數冪的乘法,可判斷A、B,根據冪的乘方,可判斷C,根據同底數冪的除法,可判斷D.【詳解】A.a4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a12÷a3=a9,故D錯誤.故選C.本題考查了同底數冪的除法,同底數冪的除法底數不變指數相減是解題的關鍵.9、C【解析】試題解析:.故選C.考點:分式的加減法.10、B【解析】
延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點睛:本題考查的是解直角三角形的應用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數的定義是解題的關鍵.11、D【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.12、C【解析】
利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內空氣中的含藥量不低于8mg/m3的持續時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.本題考查反比例函數的應用、一次函數的應用等知識,解題的關鍵是讀懂圖象信息,屬于中考常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、6°【解析】∠B=48°,∠ACB=90°,所以∠A=42°,DC是中線,所以∠BCD=∠B=48°,∠DCA=∠A=48°,因為∠BCD=∠DCB’=48°,所以∠ACB′=48°-46°=6°.14、【解析】
根據三角形法則求出即可解決問題;【詳解】如圖,∵=,=,∴=+=-,∵BD=BC,∴=.故答案為.本題考查平面向量,解題的關鍵是熟練掌握三角形法則,屬于中考常考題型.15、1.【解析】
根據題意分析可得:第1個圖案中棋子的個數5個,第2個圖案中棋子的個數5+6=11個,…,每個圖形都比前一個圖形多用6個,繼而可求出第30個“小屋子”需要的棋子數.【詳解】根據題意分析可得:第1個圖案中棋子的個數5個.第2個圖案中棋子的個數5+6=11個.….每個圖形都比前一個圖形多用6個.∴第30個圖案中棋子的個數為5+29×6=1個.故答案為1.考核知識點:圖形的規律.分析出一般數量關系是關鍵.16、2【解析】解:分別過點A、B作x軸的垂線,垂足分別為D、E.則AD∥BE,AD=2BE=,∴B、E分別是AC、DC的中點.∴△ADC∽△BEC,∵BE:AD=1:2,∴EC:CD=1:2,∴EC=DE=a,∴OC=3a,又∵A(a,),B(2a,),∴S△AOC=AD×CO=×3a×==1,解得:k=2.17、【解析】
根據平均數、中位數和方差的意義分別對每一項進行解答,即可得出答案.【詳解】解:∵甲班的平均成績是92.5分,乙班的平均成績是92.5分,∴這次數學測試成績中,甲、乙兩個班的平均水平相同;故正確;∵甲班的中位數是95.5分,乙班的中位數是90.5分,甲班學生中數學成績95分及以上的人數多,故錯誤;∵甲班的方差是41.25分,乙班的方差是36.06分,甲班的方差大于乙班的方差,乙班學生的數學成績比較整齊,分化較小;故正確;上述評估中,正確的是;故答案為:.本題考查平均數、中位數和方差,平均數表示一組數據的平均程度中位數是將一組數據從小到大或從大到小重新排列后,最中間的那個數或最中間兩個數的平均數;方差是用來衡量一組數據波動大小的量.18、1.【解析】
先根據反比例函數比例系數k的幾何意義得到,再根據相似三角形的面積比等于相似比的平方,得到用含k的代數式表示3個陰影部分的面積之和,然后根據三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【詳解】解:根據題意可知,軸,設圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數綜合題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)-1≤x<1.【解析】試題分析:(1)、首先根據絕對值、冪、三角函數的計算法則得出各式的值,然后進行求和得出答案;(2)、分半求出每個不等式的解,然后得出不等式組的解.試題解析:解:(1)、(2)、由得:x<1,由得:x≥-1,∴不等式的解集:-1≤x<1.20、(1)見解析(2)見解析【解析】
(1)根據AAS證△AFE≌△DBE,推出AF=BD,即可得出答案.(2)得出四邊形ADCF是平行四邊形,根據直角三角形斜邊上中線性質得出CD=AD,根據菱形的判定推出即可.【詳解】解:(1)證明:∵AF∥BC,∴∠AFE=∠DBE.∵E是AD的中點,AD是BC邊上的中線,∴AE=DE,BD=CD.在△AFE和△DBE中,∵∠AFE=∠DBE,∠FEA=∠BED,AE=DE,∴△AFE≌△DBE(AAS)∴AF=BD.∴AF=DC.(2)四邊形ADCF是菱形,證明如下:∵AF∥BC,AF=DC,∴四邊形ADCF是平行四邊形.∵AC⊥AB,AD是斜邊BC的中線,∴AD=DC.∴平行四邊形ADCF是菱形21、1.【解析】
先根據分式的運算法則進行化簡,再代入求值.【詳解】解:原式=()×=×=;將x=1代入原式==1.分式的化簡求值22、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】
(1)根據A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數)的圖象上,可以求得b、c的值;(3)①根據題意可以得到點P′的坐標,再根據函數解析式可以求得點B的坐標,進而求得直線BC的解析式,再根據點P′落在直線BC上,從而可以求得m的值;②根據題意可以表示出P′A3,從而可以求得當P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數)與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關于原點對稱,∴P′(﹣m,﹣t),當y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設直線BC對應的函數解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.本題是二次函數綜合題,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用二次函數的性質解答.23、(1)y=x1﹣4x+6;(1)D點的坐標為(6,0);(3)存在.當點C的坐標為(4,1)時,△CBD的周長最小【解析】
(1)只需運用待定系數法就可求出二次函數的解析式;(1)只需運用配方法就可求出拋物線的頂點坐標,只需令y=0就可求出點D的坐標;(3)連接CA,由于BD是定值,使得△CBD的周長最小,只需CD+CB最小,根據拋物線是軸對稱圖形可得CA=CD,只需CA+CB最小,根據“兩點之間,線段最短”可得:當點A、C、B三點共線時,CA+CB最小,只需用待定系數法求出直線AB的解析式,就可得到點C的坐標.【詳解】(1)把A(1,0),B(8,6)代入,得解得:∴二次函數的解析式為;(1)由,得二次函數圖象的頂點坐標為(4,﹣1).令y=0,得,解得:x1=1,x1=6,∴D點的坐標為(6,0);(3)二次函數的對稱軸上存在一點C,使得的周長最小.連接CA,如圖,∵點C在二次函數的對稱軸x=4上,∴xC=4,CA=CD,∴的周長=CD+CB+BD=CA+CB+BD,根據“兩點之間,線段最短”,可得當點A、C、B三點共線時,CA+CB最小,此時,由于BD是定值,因此的周長最小.設直線AB的解析式為y=mx+n,把A(1,0)、B(8,6)代入y=mx+n,得解得:∴直線AB的解析式為y=x﹣1.當x=4時,y=4﹣1=1,∴當二次函數的對稱軸上點C的坐標為(4,1)時,的周長最小.本題考查了(1)二次函數綜合題;(1)待定系數法求一次函數解析式;(3)二次函數的性質;(4)待定系數法求二次函數解析式;(5)線段的性質:(6)兩點之間線段最短.24、2.7米.【解析】
先根據勾股定理求出AB的長,同理可得出BD的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寧夏回族自治區銀川市興慶區高級中學2025屆高考化學試題考前最后一卷預測卷(一)含解析
- 云南省文山壯族苗族自治州富寧縣2025年三年級數學第二學期期末達標檢測試題含解析
- 上海市楊浦區名校2025年中考化學試題模擬試卷解析含解析
- 山東泰安2024-2025學年初三下學期考試物理試題理試題分類匯編含解析
- 浙江舟山群島新區旅游與健康職業學院《食品感官分析》2023-2024學年第一學期期末試卷
- 盆底康復治療規范與方法
- 湛江市大成中學高一下學期第一次月考物理試題
- 康復護理頸椎病課件
- 2025海運合同樣本范文
- 2025版企業辦公租賃合同范本
- 中國近代三種建國方案
- 第2課+古代希臘羅馬(教學設計)-【中職專用】《世界歷史》(高教版2023基礎模塊)
- 工會制度牌模板
- 2024年高級統計實務考試真題及答案解析
- 《幽門螺桿菌檢測》課件
- 《日語零基礎學習》課件
- 《云南土壤類型》課件
- 前列腺癌護理個案查房課件
- 小兒肝臟間葉錯構瘤課件
- 全國導游考試(面試)200問及面試內容(附答案)
- 旋挖鉆機施工安全操作規程與注意事項
評論
0/150
提交評論